Artificial Intelligence Clinical Trial
Official title:
Deep Learning ECG Evaluation and Clinical Assessment for Competitive Sport Eligibility
The goal of this observationl study is to evaluate the possibility of building a Deep Learning (DL) model capable of analyzing electrocardiographic traces of athletes and providing information in the form of a probability stratification of cardiovascular disease. Researchers will enroll a training cohort of 455 participants, evaluated following standard clinical practice for eligibility in competitive sports. The response of the clinical evaluation and ECG traces will be recorded to build a DL model. Researchers will subsequently enroll a validation cohort of 76 participants. ECG traces will be analyzed to evaluate the accuracy of the model to discriminate participants cleared for sports eligibility versus participants who need further medical tests
The goal of this observationl study is to evaluate the possibility of building a Deep Learning (DL) model capable of analyzing electrocardiographic traces of athletes and providing information in the form of a probability stratification of cardiovascular disease. The DL model requires training to be calibrated. The project plans to conduct accuracy evaluations on the validation population (76 athletes) and training trials on a different dataset (455 athletes). There will be an initial phase of system training. Athletes will be assessed according to current guidelines and the italian cardiological guidelines for competitive sports participation - COCIS, with the required diagnostic tests on a case-by-case basis. At the end of the cardiac evaluation, athletes can be classified as "fit" or "unfit" for competitive activity. Participants will submit the ECGs of "fit" and "unfit" athletes, categorized into these two groups, to a deep learning algorithm to train the artificial intelligence system. A population of consecutive athletes will then be recruited to form the validation set for the test. These athletes have indications for evaluation for the granting of competitive fitness, as indicated by the referring sports physicians. In this case as well, athletes in the validation set will be assessed according to guidelines and COCIS with appropriate tests on a case-by-case basis to evaluate fitness for competition. Participants will subject the ECGs of the validation set athletes to the artificial intelligence model to assess accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and AUC in discriminating athletes judged "fit" from those judged "unfit" for competitive activity after cardiac investigations. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04589078 -
Polyp REcognition Assisted by a Device Interactive Characterization Tool - The PREDICT Study
|
||
Completed |
NCT03857438 -
Correlation of Audiovisual Features With Clinical Variables and Neurocognitive Functions in Bipolar Disorder, Mania
|
||
Completed |
NCT04735055 -
Artificial Intelligence Prediction for the Severity of Acute Pancreatitis
|
||
Not yet recruiting |
NCT05452993 -
Screening for Diabetic Retinopathy in Pharmacies With Artificial Intelligence Enhanced Retinophotography
|
N/A | |
Not yet recruiting |
NCT04337229 -
Evaluation of Comfort Behavior Levels of Newborns With Artificial Intelligence Techniques
|
N/A | |
Completed |
NCT05687318 -
A Clinical Trial of the Effectiveness and Safety of Software Assisting Diagnose the Intestinal Polyp Digestive Endoscopy by Analysis of Colonoscopy Medical Images From Electronic Digestive Endoscopy Equipment
|
N/A | |
Recruiting |
NCT06051682 -
Optimization of the Diagnosis of Bone Fractures in Patients Treated in the Emergency Department by Using Artificial Intelligence for Reading Radiological Images in Comparison With Traditional Reading by the Emergency Doctor.
|
N/A | |
Not yet recruiting |
NCT06039917 -
Effect of the Automatic Surveillance System on Surveillance Rate of Patients With Gastric Premalignant Lesions
|
N/A | |
Not yet recruiting |
NCT06362629 -
AI App for Management of Atopic Dermatitis
|
N/A | |
Recruiting |
NCT06164002 -
A I in the Prediction of Clinical Performance, Marginal Fit and Fracture Resistance of Vertical Versus Horizontal Margin Designs Fabricated With 2 Ceramic Materials
|
N/A | |
Recruiting |
NCT06059378 -
Real-life Implementation of an AI-based Optical Diagnosis
|
N/A | |
Completed |
NCT05517889 -
Repeatability and Stability of Healthy Skin Features on OCT
|
||
Completed |
NCT05006092 -
Surveillance Modified by Artificial Intelligence in Endoscopy (SMARTIE)
|
N/A | |
Completed |
NCT04816981 -
AI-EBUS-Elastography for LN Staging
|
N/A | |
Recruiting |
NCT04535466 -
Diagnosis Predictive Modle for Dense Density Breast Tissue Based on Radiomics
|
||
Enrolling by invitation |
NCT04719117 -
Retrograde Cholangiopancreatography AI Assisted System Validation on Effectiveness and Safety
|
||
Completed |
NCT04399590 -
Comparing the Number of False Activations Between Two Artificial Intelligence CADe Systems: the NOISE Study
|
||
Recruiting |
NCT04126265 -
Artificial Intelligence-assisted Colonoscopy for Detection of Colon Polyps
|
N/A | |
Recruiting |
NCT06255808 -
Development of Assist Tool for Breast Examination Using the Principle of Ultrasonic Sensor
|
||
Recruiting |
NCT04131530 -
Automatic Evaluation of Inflammation Activity in Ulcerative Colitis Using pCLE With Artificial Intelligence
|