Clinical Trials Logo

Clinical Trial Summary

The goal of this observationl study is to evaluate the possibility of building a Deep Learning (DL) model capable of analyzing electrocardiographic traces of athletes and providing information in the form of a probability stratification of cardiovascular disease. Researchers will enroll a training cohort of 455 participants, evaluated following standard clinical practice for eligibility in competitive sports. The response of the clinical evaluation and ECG traces will be recorded to build a DL model. Researchers will subsequently enroll a validation cohort of 76 participants. ECG traces will be analyzed to evaluate the accuracy of the model to discriminate participants cleared for sports eligibility versus participants who need further medical tests


Clinical Trial Description

The goal of this observationl study is to evaluate the possibility of building a Deep Learning (DL) model capable of analyzing electrocardiographic traces of athletes and providing information in the form of a probability stratification of cardiovascular disease. The DL model requires training to be calibrated. The project plans to conduct accuracy evaluations on the validation population (76 athletes) and training trials on a different dataset (455 athletes). There will be an initial phase of system training. Athletes will be assessed according to current guidelines and the italian cardiological guidelines for competitive sports participation - COCIS, with the required diagnostic tests on a case-by-case basis. At the end of the cardiac evaluation, athletes can be classified as "fit" or "unfit" for competitive activity. Participants will submit the ECGs of "fit" and "unfit" athletes, categorized into these two groups, to a deep learning algorithm to train the artificial intelligence system. A population of consecutive athletes will then be recruited to form the validation set for the test. These athletes have indications for evaluation for the granting of competitive fitness, as indicated by the referring sports physicians. In this case as well, athletes in the validation set will be assessed according to guidelines and COCIS with appropriate tests on a case-by-case basis to evaluate fitness for competition. Participants will subject the ECGs of the validation set athletes to the artificial intelligence model to assess accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and AUC in discriminating athletes judged "fit" from those judged "unfit" for competitive activity after cardiac investigations. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT06285084
Study type Observational
Source I.R.C.C.S Ospedale Galeazzi-Sant'Ambrogio
Contact Davide Marchetti, MD
Phone +390283506734
Email davide.marchetti@grupposandonato.it
Status Recruiting
Phase
Start date February 2, 2024
Completion date February 2, 2027

See also
  Status Clinical Trial Phase
Completed NCT04589078 - Polyp REcognition Assisted by a Device Interactive Characterization Tool - The PREDICT Study
Completed NCT03857438 - Correlation of Audiovisual Features With Clinical Variables and Neurocognitive Functions in Bipolar Disorder, Mania
Completed NCT04735055 - Artificial Intelligence Prediction for the Severity of Acute Pancreatitis
Not yet recruiting NCT05452993 - Screening for Diabetic Retinopathy in Pharmacies With Artificial Intelligence Enhanced Retinophotography N/A
Not yet recruiting NCT04337229 - Evaluation of Comfort Behavior Levels of Newborns With Artificial Intelligence Techniques N/A
Completed NCT05687318 - A Clinical Trial of the Effectiveness and Safety of Software Assisting Diagnose the Intestinal Polyp Digestive Endoscopy by Analysis of Colonoscopy Medical Images From Electronic Digestive Endoscopy Equipment N/A
Recruiting NCT06051682 - Optimization of the Diagnosis of Bone Fractures in Patients Treated in the Emergency Department by Using Artificial Intelligence for Reading Radiological Images in Comparison With Traditional Reading by the Emergency Doctor. N/A
Not yet recruiting NCT06039917 - Effect of the Automatic Surveillance System on Surveillance Rate of Patients With Gastric Premalignant Lesions N/A
Not yet recruiting NCT06362629 - AI App for Management of Atopic Dermatitis N/A
Recruiting NCT06164002 - A I in the Prediction of Clinical Performance, Marginal Fit and Fracture Resistance of Vertical Versus Horizontal Margin Designs Fabricated With 2 Ceramic Materials N/A
Recruiting NCT06059378 - Real-life Implementation of an AI-based Optical Diagnosis N/A
Completed NCT05517889 - Repeatability and Stability of Healthy Skin Features on OCT
Completed NCT05006092 - Surveillance Modified by Artificial Intelligence in Endoscopy (SMARTIE) N/A
Completed NCT04816981 - AI-EBUS-Elastography for LN Staging N/A
Recruiting NCT04535466 - Diagnosis Predictive Modle for Dense Density Breast Tissue Based on Radiomics
Enrolling by invitation NCT04719117 - Retrograde Cholangiopancreatography AI Assisted System Validation on Effectiveness and Safety
Completed NCT04399590 - Comparing the Number of False Activations Between Two Artificial Intelligence CADe Systems: the NOISE Study
Recruiting NCT04126265 - Artificial Intelligence-assisted Colonoscopy for Detection of Colon Polyps N/A
Recruiting NCT06255808 - Development of Assist Tool for Breast Examination Using the Principle of Ultrasonic Sensor
Recruiting NCT04131530 - Automatic Evaluation of Inflammation Activity in Ulcerative Colitis Using pCLE With Artificial Intelligence