Electrical Stimulation Clinical Trial
Official title:
Influence of Electrode Positioning and Current Type on Muscle Fatigability, Force Generation, Perceived Discomfort and Neuromuscular Adaptations Induced by Neuromuscular Electric Stimulation: Implications on Rehabilitation
Verified date | May 2023 |
Source | University of Brasilia |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Introduction: Neuromuscular electrical stimulation (NMES) has the purpose of generating muscle contractions to minimize muscular atrophy and to improve neuromuscular performance. NMES has been performed using monophasic or biphasic currents, applied over a nerve trunk or muscle belly, and both can generate contractions by the peripheral and central nervous system. Pulse width (wide or narrow) is an essential parameter for NMES. Although NMES studies using wide pulses have been performed with monophasic currents, it is known that this current induces discomfort during NMES. Therefore, it is necessary to analyze if biphasic currents have the same effect as monophasic currents using the same parameters. Objectives: To compare the effects of NMES with narrow and wide pulse widths associated with monophasic and biphasic currents, applied over a tibial nerve and triceps surae muscles in healthy individuals in terms of muscle fatigue, central and peripheral contribution, voluntary and evoked force and sensory discomfort. Methods: A crossover, experimental controlled and randomized study will be developed with healthy male and female (age: 18-45 years). The following dependent variables will be: amplitude of H-reflex and M-wave (single and double pulses), voluntary and evoked triceps surae muscles torque, fatigability (force time integral), perceived discomfort and neuromuscular adaptations. The independent variables will be related to current phase, pulse width and location of electrical stimulation electrodes. There will be a familiarization session followed by 9 sessions with 7 rest days between them (10 weeks). Data will be reported as mean and standard deviation (± SD). Parametric tests will be used for the normally distributed data (Shapiro-Wilk test) that show homogeneous variations (Levene test). A repeated measure mixed-model ANOVA will be performed and, in the case of major effects or significant interactions, the Tukey post-hoc test will be applied. In addition, the power and size of the effect (reported as partial eta square, partial η2) will be calculated. The significance threshold will be set at p <0.05 for all procedures. Expected results: Biphasic currents will be more comfortable and will generate less muscle fatigue when compared to monophasic currents. There will be less fatigue and greater central contribution when wider pulse currents will be applied over a nerve trunk concerning the application with a wide pulse over a muscle belly.
Status | Completed |
Enrollment | 30 |
Est. completion date | May 1, 2023 |
Est. primary completion date | May 1, 2023 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years to 45 Years |
Eligibility | Inclusion Criteria: - Classified as physically active according to the INTERNATIONAL QUESTIONNAIRE OF PHYSICAL ACTIVITY; - To practice only recreational physical activity; - Be at least 3 months without practicing strength training. Exclusion Criteria: - Present some type of skeletal muscle dysfunction that may interfere with the tests; - NMES intolerance in the triceps surae muscle belly or tibial nerve; - Use of analgesics, antidepressants, tranquilizers or other centrally acting agents; - Cardiovascular or peripheral vascular problems, chronic diseases, neurological or muscular disorders that may hinder the complete execution of the study design by the volunteer. |
Country | Name | City | State |
---|---|---|---|
Brazil | Faculty of Physical Education | Brasília | DF |
Brazil | University of Brasília | Brasília | DF |
Lead Sponsor | Collaborator |
---|---|
University of Brasilia |
Brazil,
Aldayel A, Jubeau M, McGuigan M, Nosaka K. Comparison between alternating and pulsed current electrical muscle stimulation for muscle and systemic acute responses. J Appl Physiol (1985). 2010 Sep;109(3):735-44. doi: 10.1152/japplphysiol.00189.2010. Epub 2010 Jul 1. — View Citation
Alexandre F, Derosiere G, Papaiordanidou M, Billot M, Varray A. Cortical motor output decreases after neuromuscular fatigue induced by electrical stimulation of the plantar flexor muscles. Acta Physiol (Oxf). 2015 May;214(1):124-34. doi: 10.1111/apha.12478. Epub 2015 Mar 18. — View Citation
Bergquist AJ, Clair JM, Collins DF. Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: triceps surae. J Appl Physiol (1985). 2011 Mar;110(3):627-37. doi: 10.1152/japplphysiol.01103.2010. Epub 2010 Dec 23. — View Citation
Boerio D, Jubeau M, Zory R, Maffiuletti NA. Central and peripheral fatigue after electrostimulation-induced resistance exercise. Med Sci Sports Exerc. 2005 Jun;37(6):973-8. — View Citation
Collins DF. Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation. Exerc Sport Sci Rev. 2007 Jul;35(3):102-9. doi: 10.1097/jes.0b013e3180a0321b. — View Citation
Dreibati B, Lavet C, Pinti A, Poumarat G. Influence of electrical stimulation frequency on skeletal muscle force and fatigue. Ann Phys Rehabil Med. 2010 May;53(4):266-71, 271-7. doi: 10.1016/j.rehab.2010.03.004. Epub 2010 Apr 1. English, French. — View Citation
Foure A, Nosaka K, Wegrzyk J, Duhamel G, Le Troter A, Boudinet H, Mattei JP, Vilmen C, Jubeau M, Bendahan D, Gondin J. Time course of central and peripheral alterations after isometric neuromuscular electrical stimulation-induced muscle damage. PLoS One. 2014 Sep 12;9(9):e107298. doi: 10.1371/journal.pone.0107298. eCollection 2014. — View Citation
Hwang IS, Huang CY, Wu PS, Chen YC, Wang CH. Assessment of H reflex sensitivity with M wave alternation consequent to fatiguing contractions. Int J Neurosci. 2008 Sep;118(9):1317-30. doi: 10.1080/00207450802055606. — View Citation
Jubeau M, Zory R, Gondin J, Martin A, Maffiuletti NA. Effect of electrostimulation training-detraining on neuromuscular fatigue mechanisms. Neurosci Lett. 2007 Aug 31;424(1):41-6. doi: 10.1016/j.neulet.2007.07.018. Epub 2007 Aug 1. — View Citation
Kiernan MC, Lin CS, Burke D. Differences in activity-dependent hyperpolarization in human sensory and motor axons. J Physiol. 2004 Jul 1;558(Pt 1):341-9. doi: 10.1113/jphysiol.2004.063966. Epub 2004 May 14. — View Citation
Kiernan MC, Mogyoros I, Burke D. Differences in the recovery of excitability in sensory and motor axons of human median nerve. Brain. 1996 Aug;119 ( Pt 4):1099-105. doi: 10.1093/brain/119.4.1099. — View Citation
Martin A, Grospretre S, Vilmen C, Guye M, Mattei JP, LE Fur Y, Bendahan D, Gondin J. The Etiology of Muscle Fatigue Differs between Two Electrical Stimulation Protocols. Med Sci Sports Exerc. 2016 Aug;48(8):1474-84. doi: 10.1249/MSS.0000000000000930. — View Citation
Neyroud D, Dodd D, Gondin J, Maffiuletti NA, Kayser B, Place N. Wide-pulse-high-frequency neuromuscular stimulation of triceps surae induces greater muscle fatigue compared with conventional stimulation. J Appl Physiol (1985). 2014 May 15;116(10):1281-9. doi: 10.1152/japplphysiol.01015.2013. Epub 2014 Mar 27. — View Citation
Regina Dias Da Silva S, Neyroud D, Maffiuletti NA, Gondin J, Place N. Twitch potentiation induced by two different modalities of neuromuscular electrical stimulation: implications for motor unit recruitment. Muscle Nerve. 2015 Mar;51(3):412-8. doi: 10.1002/mus.24315. Epub 2015 Jan 5. — View Citation
Selkowitz DM, Rossman EG, Fitzpatrick S. Effect of burst-modulated alternating current carrier frequency on current amplitude required to produce maximally tolerated electrically stimulated quadriceps femoris knee extension torque. Am J Phys Med Rehabil. 2009 Dec;88(12):973-8. doi: 10.1097/PHM.0b013e3181c1eda5. — View Citation
Ward AR, Lucas-Toumbourou S, McCarthy B. A comparison of the analgesic efficacy of medium-frequency alternating current and TENS. Physiotherapy. 2009 Dec;95(4):280-8. doi: 10.1016/j.physio.2009.06.005. Epub 2009 Sep 2. — View Citation
Ward AR, Robertson VJ. The variation in fatigue rate with frequency using kHz frequency alternating current. Med Eng Phys. 2000 Nov;22(9):637-46. doi: 10.1016/s1350-4533(00)00085-0. — View Citation
Ward AR, Shkuratova N. Russian electrical stimulation: the early experiments. Phys Ther. 2002 Oct;82(10):1019-30. — View Citation
Wegrzyk J, Foure A, Le Fur Y, Maffiuletti NA, Vilmen C, Guye M, Mattei JP, Place N, Bendahan D, Gondin J. Responders to Wide-Pulse, High-Frequency Neuromuscular Electrical Stimulation Show Reduced Metabolic Demand: A 31P-MRS Study in Humans. PLoS One. 2015 Nov 30;10(11):e0143972. doi: 10.1371/journal.pone.0143972. eCollection 2015. — View Citation
Wegrzyk J, Foure A, Vilmen C, Ghattas B, Maffiuletti NA, Mattei JP, Place N, Bendahan D, Gondin J. Extra Forces induced by wide-pulse, high-frequency electrical stimulation: Occurrence, magnitude, variability and underlying mechanisms. Clin Neurophysiol. 2015 Jul;126(7):1400-12. doi: 10.1016/j.clinph.2014.10.001. Epub 2014 Oct 13. — View Citation
* Note: There are 20 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Muscle Fatigue | Muscle Fatigue will be assessed by Force time integral (area under the force trace), after neuromuscular electrical stimulation protocol. | Change from baseline to the end of thirty-six contractions evoked by electrical stimulation (1 per week, total of 9 sessions). This outcome will be measured up to 9 weeks. Data will be reported through study completion (4 years). | |
Primary | Muscle Force | Muscle force will be assessed by muscle force changes, based on the torque generated pre and post neuromuscular electrical stimulation protocol. | Change from baseline to the end of thirty-six contractions evoked by electrical stimulation (1 per week, total of 9 sessions). This outcome will be measured up to 9 weeks. Data will be reported through study completion (4 years). | |
Primary | Change from Baseline Central contribution (H reflex amplitude) after 15 minutes session of NMES | Central contribution will be measured before and after 15 minutes (36 contractions) of electrical stimulation in the session. | Change from baseline to the end of thirty-six contractions evoked by electrical stimulation (1 per week, total of 9 sessions). This outcome will be measured up to 9 weeks. Data will be reported through study completion (4 years). | |
Primary | Change from Baseline Peripheral contribution (M wave amplitude) after 15 minutes session of NMES | Peripheral contribution will be measured before and after acute session 15 minutes (36 contractions) of electrical stimulation in the session. | Change from baseline to the end of thirty-six contractions evoked by electrical stimulation (1 per week, total of 9 sessions). This outcome will be measured up to 9 weeks. Data will be reported through study completion (4 years). | |
Primary | Change from Baseline Evoked Torque after 15 minutes session of electrical stimulation | Evoked Torque will be measured before and after acute session 15 minutes (36 contractions) of electrical stimulation in the session. | Change from baseline to the end of thirty-six contractions evoked by electrical stimulation (1 per week, total of 9 sessions). This outcome will be measured up to 9 weeks. Data will be reported through study completion (4 years). | |
Primary | Discomfort | Discomfort sensory will be evaluated by Visual Analogic Scale during and after the evoked torque measurement with NMES. The Visual Analogic Scale assess pain by rating the subjective perceived discomfort of the subject from 0 (no perceived discomfort) to 10 (the most perceived discomfort) | At the beginning, middle and end of thirty-six contractions evoked by electrical stimulation (1 per week, total of 9 sessions). This outcome will be measured up to 9 weeks. Data will be reported through study completion (4 years). |
Status | Clinical Trial | Phase | |
---|---|---|---|
Terminated |
NCT02734719 -
Increasing Bone Density by Application of Surface Electrical Stimulation
|
N/A | |
Completed |
NCT04884932 -
Percutaneous High Frequency Alternating Current Stimulation in Healthy Volunteers With 30kHz
|
N/A | |
Not yet recruiting |
NCT05905406 -
Effect of Femoral Quadriceps Muscle Length on Fatigue Induced by Neuromuscular Electrical Stimulation
|
N/A | |
Completed |
NCT04346719 -
Percutaneous High Frequency Alternating Current Stimulation in Healthy Volunteers
|
N/A | |
Completed |
NCT04389307 -
Intravaginal Electrical Stimulation in Idiopathic Overactive Bladder
|
N/A | |
Completed |
NCT04727983 -
Effects of External Neuromuscular Electrical Stimulation in Women With Urgency Urinary Incontinence
|
N/A | |
Recruiting |
NCT05236140 -
Electrical Stimulation in Men With Urinary Incontinence After Radical Prostatectomy
|
N/A | |
Recruiting |
NCT01820598 -
Phase II Study of Neuromuscular Electrical Multisite System on Cardiovascular Effects in Severe Obese Patients
|
N/A | |
Completed |
NCT04008589 -
Non-invasive Current Stimulation for Restoration of Vision
|
Phase 1/Phase 2 | |
Completed |
NCT04662229 -
Efficacy of Eco-guided PENS on Handgrip Strength
|
N/A | |
Enrolling by invitation |
NCT04010994 -
Treatment of Patients With Optic Nerve Damage Patients Using Electrostimulation
|
Phase 1/Phase 2 | |
Completed |
NCT04792125 -
Effect of External Electrical Stimulation and Pelvic Floor Muscle Training
|
N/A | |
Completed |
NCT05879939 -
Transcutaneous Repetitive Phrenic Nerve Stimulation in Healthy Adults
|
||
Completed |
NCT03822221 -
Angles of Knee and Hip Joints for Optimization of Neuromuscular Electrical Stimulation of the Quadriceps Femoris Muscle
|
N/A | |
Suspended |
NCT03905772 -
Neuromuscular Adaptations After Training in the Muscle Belly of Triceps Surae
|
N/A | |
Recruiting |
NCT05395715 -
Conditioning Electrical Stimulation to Improve Outcomes in Cubital Tunnel Syndrome
|
N/A | |
Completed |
NCT06048471 -
High Tone Therapy for Chemotherapy Induced Neuropathy
|
N/A |