Clinical Trials Logo

Clinical Trial Summary

The aim of this study is to investigate effects of femur exposed to unilateral vibration on the rest muscle electrical activity of contralateral hip adductors and contralateral soleus H-reflex in young adult men.

This study hypothesize that femur exposed to unilateral vibration may affect the rest muscle electrical activity of contralateral hip adductors. Vibration can effectively enhance muscle strength and power. Previous studies have shown that vibration increases muscle electromyographic (EMG) activity. It has been showed that bone has an effect on the increase in muscle EMG activity caused by vibration in healthy young adults in a study. In this study, it was reported that vibrations-induced increases in muscle electrical activity of flexor carpi radialis (FCR) was related to ultradistal radius bone mineral content (BMC) and the FCR H-reflex was suppressed or depressed during vibration. This findings were reported to support the assumption that the bone exposed to cyclic mechanical loading may neuronally regulate muscle activity.


Clinical Trial Description

A total of 20 voluntaries are planned to include in this study.

Vibration will be applied the right lower extremity by whole-body vibration (PowerPlate Pro). Cases will stand on vibration plate. WBV will be applied at a frequency of 40 Hz and amplitude of 2 mm for 60 seconds. WBV will be applied one session only.

The rest muscle electrical activity of ipsilateral and contralateral hip adductor muscles at rest will be measured by PowerLab (data acquisition system, ADInstruments, Australia) device.The rest-EMGrms will be measured at before and during vibration. We also evaluate a change in contralateral soleus H reflex during vibration.

Effects of bone on the rest muscle electrical activity will be assessed by hip bone mineral density, bone mineral content and serum sclerostin level. The right hip bone mineral density (BMD) and BMC will be evaluated by bone densitometer (Norland). Plasma sclerostin level will be measured by using Human Sclerostin ELISA kıt before and after vibration. ;


Study Design

Intervention Model: Single Group Assignment, Masking: Double Blind (Subject, Investigator), Primary Purpose: Basic Science


Related Conditions & MeSH terms


NCT number NCT01419782
Study type Interventional
Source Bagcilar Training and Research Hospital
Contact
Status Completed
Phase N/A
Start date March 2011
Completion date December 2012

See also
  Status Clinical Trial Phase
Withdrawn NCT01553487 - Effects Of Unilateral Forearm Vibration On The Loss Of Muscle And Bone Of Contralateral Forearm N/A
Completed NCT02641405 - Efficacy of Proprioceptive Focal Stimulation (EQUISTASI) on Gait Parameters in Parkinson. Italian Multicentric Study N/A
Not yet recruiting NCT03016286 - Bone Myoregulation Reflex & Presynaptic Ia Inhibition N/A
Completed NCT02886819 - Whole-body Vibration Induces a Short or Long Latency Muscular Reflex N/A
Completed NCT01780376 - Latency of Vibration-Induced Reflex Muscle Activity N/A
Completed NCT01310348 - Effect of Bone on Vibration-Induced Muscle Strength Gain N/A
Recruiting NCT05132881 - Effect of (TaVNS) on Anxiety and Brain Function in Distressed Health Care Workers N/A