Clinical Trials Logo

Clinical Trial Summary

Determination of the acute pulmonary toxicities of e-cigarettes in young adults is of major public health importance, as e-cigarette vapor contains established toxicants that as hypothesized cause acute damage to the airways and the pulmonary microvasculature that may promote the development of CLD, for which there remain few effective therapies. The study therefore propose a pilot study using a randomized crossover design in ten healthy young adults to test the acute effects of a standardized e-cigarette exposure on two sensitive, safe, non-invasive imaging measures: (1) ventilation defects on hyperpolarized helium-enhanced magnetic resonance imaging, and (2) pulmonary microvascular blood flow on gadolinium-enhanced pulmonary magnetic resonance angiography.


Clinical Trial Description

Magnetic resonance imaging (MRI) and angiography (MRA) measures are promising approaches to detecting and characterizing the anticipated acute pulmonary toxicities of e-cigarettes. Hyperpolarized helium (3He)-enhanced MRI may be more sensitive than spirometry, a global lung function measure, for determination of airway toxicities. 3He-enhanced MRI has been used to demonstrate the extent of ventilation defects in healthy persons with normal spirometry; to measure ventilation changes in asthmatics pre- and post-challenge with bronchodilators and methacholine; and to predict pulmonary hospitalizations in persons with COPD. Meanwhile, until recently, non-invasive measures of pulmonary vascular toxicities were lacking. The investigators have developed an innovative measure of pulmonary microvascular blood flow on gadolinium (Gd)-enhanced MRA, which the investigators found to be markedly abnormal in early chronic obstructive pulmonary disease (COPD) and emphysema, and to be associated with increased endothelial microparticles, a marker of endothelial dysfunction. Nonetheless, neither of these sensitive, non-invasive, repeatable, and reproducible measures has ever been used to assess e-cigarette toxicities. It is hypothesized that e-cigarette vapor inhalation will result in an acute increase in global and regional ventilation defects and an acute decrease in global and regional pulmonary microvascular perfusion. This pilot work will provide the experience and data to support subsequent funding applications powered to definitively establish the acute toxicities of e-cigarette vapor of various compositions (e.g., with and without nicotine, with and without flavoring) in persons with and without chronic lung diseases (e.g., asthma) on pulmonary ventilation and microvascular perfusion. Furthermore, confirmation of the hypotheses in this sample would provide important preliminary evidence of e-cigarette pulmonary toxicities to inform interim regulatory decisions, as well as potentially generating vivid images of e-cigarette harms that may be meaningful to the general public and therefore suitable for use in public education campaigns. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02783768
Study type Interventional
Source Columbia University
Contact
Status Completed
Phase Early Phase 1
Start date March 1, 2017
Completion date July 24, 2018

See also
  Status Clinical Trial Phase
Completed NCT05043428 - The Roles of Peers and Functional Tasks in Enhancing Exercise Training for Adults With COPD N/A
Completed NCT00528996 - An Efficacy and Safety Study to Compare Three Doses of BEA 2180 BR to Tiotropium and Placebo in the Respimat Inhaler. Phase 2
Completed NCT03740373 - A Study to Assess the Pulmonary Distribution of Budesonide, Glycopyrronium and Formoterol Fumarate Phase 1
Completed NCT05393245 - Safety of Tiotropium + Olodaterol in Chronic Obstructive Pulmonary Disease (COPD) Patients in Taiwan: a Non-interventional Study Based on the Taiwan National Health Insurance (NHI) Data
Completed NCT05402020 - Effectiveness of Tiotropium + Olodaterol Versus Inhaled Corticosteroids (ICS) + Long-acting β2-agonists (LABA) Among COPD Patients in Taiwan
Completed NCT04011735 - Re-usable Respimat® Soft MistTM Inhaler Study
Enrolling by invitation NCT03075709 - The Development, Implementation and Evaluation of Clinical Pathways for Chronic Obstructive Pulmonary Disease (COPD) in Saskatchewan
Completed NCT03764163 - Image and Model Based Analysis of Lung Disease Early Phase 1
Completed NCT00515268 - Endotoxin Challenge Study For Healthy Men and Women Phase 1
Completed NCT04085302 - TARA Working Prototype Engagement Evaluation: Feasibility Study N/A
Completed NCT03691324 - Training of Inhalation Technique in Hospitalized Chronic Obstructive Pulmonary Disease (COPD) Patients - a Pilot Study N/A
Completed NCT02236611 - A 12-week Study to Evaluate the Efficacy and Safety of Umeclidinium 62.5 Microgram (mcg) Compared With Glycopyrronium 44 mcg in Subjects With Chronic Obstructive Pulmonary Disease (COPD) Phase 4
Completed NCT00153075 - Flow Rate Effect Respimat Inhaler Versus a Metered Dose Inhaler Using Berodual in Patients With Chronic Obstructive Pulmonary Disease (COPD) Phase 4
Completed NCT01009463 - A Study to Evaluate the Efficacy and Safety of Fluticasone Furoate (FF)/GW642444 Inhalation Powder in Subjects With Chronic Obstructive Pulmonary Disease (COPD) Phase 3
Completed NCT01017952 - A Study to Evaluate Annual Rate of Exacerbations and Safety of 3 Dosage Strengths of Fluticasone Furoate (FF)/GW642444 Inhalation Powder in Subjects With Chronic Obstructive Pulmonary Disease (COPD) Phase 3
Completed NCT04882124 - Study of Effect of CSJ117 on Symptoms, Pharmacodynamics and Safety in Patients With COPD Phase 2
Completed NCT02853123 - Effect of Tiotropium + Olodaterol on Breathlessness in COPD Patients Phase 4
Completed NCT02619357 - Method Validation Study to Explore the Sensitivity of SenseWear Armband Gecko for Measuring Physical Activity in Subjects With Chronic Obstructive Pulmonary Disease (COPD) & Asthma Phase 1
Recruiting NCT05858463 - High Intensity Interval Training and Muscle Adaptations During PR N/A
Not yet recruiting NCT05032898 - Acute Exacerbation of Chronic Obstructive Pulmonary Disease Inpatient Registry Study Stage II