View clinical trials related to Dyskeratosis Congenita.
Filter by:Fanconi anemia (FA) and Dyskeratosis congenita (DC) are inherited bone marrow failure syndromes. The current androgen treatments (e.g., oxymetholone) used to treat FA and DC can cause unwanted masculinizing side effects, indicating a need for a different medication. Danazol is a less potent androgen,and may therefore have fewer masculinizing side effects. Danazol is currently approved by the Food and Drug Administration (FDA) for the treatment of other diseases, but it has never been studied in patients with FA and DC. The main purpose of this study is to see if danazol is a safe treatment for FA and DC. Specifically,we would like to determine: - the best dose of danazol; - how fast hemoglobin (a protein that carries oxygen in the blood) levels rise in FA and DC patients receiving danazol therapy; and - the genetic pattern (known as expression profile) of certain cells in response to danazol, which can predict how well people respond to the medication. Subjects who enroll in the study will be treated with danazol for up to 24 weeks (about 6 months), and will have up to 11 study visits, including followup visits at 38 weeks (9 months) and 52 weeks (one year).
RATIONALE: Studying biopsy, bone marrow, and blood samples from patients with cytopenia that did not respond to treatment may help doctors learn more about the disease and plan the best treatment. PURPOSE: This laboratory study is assessing immune function in young patients with cytopenia that did not respond to treatment.
Transplantation with stem cells is a standard therapy in many centers around the world. Previous experience with stem cell transplantation therapy for leukemias, lymphomas, other cancers, aplastic anemia and other non-malignant diseases, has led to prolonged disease-free survival or cure for some patients. However, the high doses of pre-transplant radiation and chemotherapy drugs used, and the type of drugs used, often cause many side effects that are intolerable for some patients. Slow recovery of blood counts is a frequent complication of high dose pre-transplant regimens, resulting in a longer period of risk for bleeding and infection plus a longer time in the hospital. Recent studies have shown that using lower doses of radiation and chemotherapy (ones that do not completely kill all of the patient's bone marrow cells) before blood or bone marrow transplant, may be a better treatment for high risk patients, such as those with Dyskeratosis Congenita (DC) or Severe Aplastic Anemia(SAA). These low dose transplants may result in shorter periods of low blood counts, and blood counts that do not go as low as with traditional pre-transplant radiation and chemotherapy. Furthermore, in patients with Dyskeratosis Congenita or SAA, the stem cell transplant will replace the blood forming cells with healthy cells. It has recently been shown that healthy marrow can take and grow after transplantation which uses doses of chemotherapy and radiation that are much lower than that given to patients with leukemia. While high doses of chemotherapy and radiation may be necessary to get rid of leukemia, this may not be important to patients with Dyskeratosis Congenita or SAA. The purpose of this research is to see if this lower dose chemotherapy and radiation regimen followed by transplant is a safe and effective treatment for patients with Dyskeratosis Congenita or SAA.
Background: A prospective cohort of Inherited Bone Marrow Failure Syndrome (IBMFS) will provide new information regarding cancer rates and types in these disorders. Pathogenic variant(s) in IBMFS genes are relevant to carcinogenesis in sporadic cancers. Patients with IBMFS who develop cancer differ in their genetic and/or environmental features from patients with IBMFS who do not develop cancer. These cancer-prone families are well suited for cancer screening and prevention trials targeting those at increased genetic risk of cancer. Carriers of IBMFS pathogenic variant(s) are at increased risk of cancer. The prototype disorder is Fanconi's Anemia (FA); other IBMFS will also be studied. Objectives: To determine the types and incidence of specific cancers in patients with an IBMFS. To investigate the relevance of IBMFS pathogenic variant(s) in the carcinogenesis pathway of the sporadic counterparts of IBMFS-associated cancers. To identify risk factors for IBMFS-related cancers in addition to the primary germline pathogenic variant(s). To determine the risk of cancer in IBMFS carriers. Eligibility: North American families with a proband with an IBMFS. IBMFS suspected by phenotype, confirmed by pathogenic variant(s) in an IBMFS gene, or by clinical diagnostic test. Fanconi's anemia: birth defects, marrow failure, early onset malignancy; positive chromosome breakage result. Diamond-Blackfan anemia: pure red cell aplasia; elevated red cell adenosine deaminase. Dyskeratosis congenita: dysplastic nails, lacey pigmentation, leukoplakia; marrow failure. Shwachman-Diamond Syndrome: malabsorption; neutropenia. Amegakaryocytic thrombocytopenia: early onset thrombocytopenia. Thrombocytopenia absent radii: absent radii; early onset thrombocytopenia. Severe Congenital Neutropenia: neutropenia, pyogenic infections, bone marrow maturation arrest. Pearson's Syndrome: malabsorption, neutropenia, marrow failure, metabolic acidosis; ringed sideroblasts. Other bone marrow failure syndromes: e.g. Revesz Syndrome, WT, IVIC, radio-ulnar synostosis, ataxia-pancytopenia. First degree relatives of IBMFS-affected subjects as defined here, i.e. siblings (half or full), biologic parents, and children. Grandparents of IBMFS-affected subjects. Patients in the general population with sporadic tumors of the types seen in the IBMFS (head and neck, gastrointestinal, and anogenital cancer), with none of the usual risk factors (e.g. smoking, drinking, HPV). Design: Natural history study, with questionnaires, clinical evaluations, clinical and research laboratory test, review of medical records, cancer surveillance. Primary endpoints are all cancers, solid tumors, and cancers specific to each type of IBMFS. Secondary endpoints are markers of pre-malignant conditions, such as leukoplakia, serum or tissue evidence of carcinogenic viruses, and bone marrow morphologic myelodyplastic syndrome or cytogenetic clones....
OBJECTIVES: I. Assess the efficacy of recombinant human granulocyte colony-stimulating factor (G-CSF) in raising the absolute neutrophil count, platelet count, and hemoglobin level in patients with inherited bone marrow failure syndromes. II. Assess the efficacy of a reduced maintenance dose in patients who respond to daily G-CSF. III. Assess the toxic effects of G-CSF in these patients. IV. Measure bone marrow progenitor colonies before and after G-CSF. V. Measure CD34-positive cells in marrow and blood before and after G-CSF using flow cytometry and immunohistochemistry.