Disc Degeneration Clinical Trial
Official title:
Percutaneous Image Guided Delivery of Autologous Bone Marrow Derived Mesenchymal Stem Cells for the Treatment of Symptomatic Degenerated Intervertebral Disc Disease
Verified date | April 2022 |
Source | University Hospitals Cleveland Medical Center |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
This study seeks to bridge these technologies and obtain data regarding the safety and efficacy of image guided percutaneous needle injection of expanded autologous bone marrow derived mesenchymal stem cells to symptomatic degenerated intervertebral discs in humans. The primary outcome will be to assess the safety and efficacy and monitor for adverse events.
Status | Withdrawn |
Enrollment | 0 |
Est. completion date | September 30, 2022 |
Est. primary completion date | September 30, 2021 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years to 80 Years |
Eligibility | Inclusion Criteria: - Symptoms despite conservative (non-surgical) management for > 6 months - Leg pain, if present, is of nonradicular origin, i.e., not due to stimulation of nerve roots or dorsal root ganglion of a spinal nerve by compressive forces. - Leg pain, if present, does not extend below the knee and is no greater than 50% of low back pain as measured on a visual analog scale. If bilateral leg pain existed, the worst leg pain is no greater than 50% of low back pain. - Diagnostic medical branch block or facet joint injection between 18 months and 2 weeks prior to the study procedure indicates no facet joint involvement. - Distress and risk assessment method stratification to a) normal or b) at risk designations - Modified Pfirrmann MR classification of implicated intervertebral discs of III, IV, or V - Absence of infection - Absence of coagulopathy - Ability to provide informed written consent Exclusion Criteria: - Age > 80y or < 18 y - Neoplasia - History of recent or active malignancy(non-melanoma skin cancers, carcinoma in situ, etc. are allowable) - Active infection - Underlying congenital segmentation or other spinal anomalies that result in differential intervertebral disc pressures - Significant spinal stenosis - Interpreted as "severe" on any cross sectional imaging study - Pregnant or planning to become pregnant - Contraindication to MRI - Indwelling medical devices such as pacemakers, aneurysm clips, etc - Indwelling metal from any other cause (trauma, etc) - To be excluded with history and radiographs, as necessary - Immunosuppression - History or laboratory results indicative of any significant cardiac, endocrine, hematologic, hepatic, immunologic, infectious, metabolic, urologic, pulmonary, gastrointestinal, dermatologic, psychiatric, renal, neoplastic, or other disorder that in the opinion of the Principal Investigator or his/her designee would preclude the safe performance of BM aspiration, transplantation of autologous MSCs, or performance of any of the planned study assessments. - Uncorrectable coagulopathies - Concurrent participation in another investigational trial involving systemic administration of agents or within the previous 30 days. - Extreme obesity, as defined by NIH Clinical Guidelines Body Mass Index (BMI >35). - Clinically relevant instability on flexion-extension as determined by the investigator by overlaying films. - Have undergone a previous surgery at the involved level that may have altered the target disc (e.g. discectomy, laminectomy, foraminotomy, fusion, intradiscal electrothermal therapy, intradiscal radiofrequency thermocoagulation etc.). - Have an acute fracture of the spine at the time of enrollment in the study. Clinically compromised vertebral bodies at the affected level due to current or past trauma, e.g., sustained pathological fracture or multiple fractures of vertebrae. - Have a history of epidural steroid injections within 1 week prior to study treatment. - Have received chronic (more than 7 consecutive days) treatment with systemic corticosteroids at a dose equivalent to prednisone = 10 mg/day within 14 days prior to injection procedure. - Have received systemic or local nonsteroidal anti-inflammatory drugs (NSAIDS) injections into the index and/or adjacent vertebral levels within 48 hours prior to study procedure. - Have a known history of hypersensitivity or anaphylactic reaction to murine or bovine products or dimethyl sulfoxide (DMSO). - Have a known history of hypersensitivity or anaphylactic reaction to products from birds, such as feathers, eggs or poultry. - Have a positive screen for human immunodeficiency virus (HIV) by antibodies or nucleic acid test. - Have had treatment with any investigational therapy or device within 6 months of study procedure and/or plans to participate in any other allogeneic stem cell/progenitor cell therapy trial during the 3-year follow-up period. - Have been a recipient of prior stem cell/progenitor cell therapy or other biological intervention to repair the target intervertebral disc. - Are transient or has been treated in the last 6 months before enrollment for alcohol and/or drug abuse in an inpatient substance abuse program. - Habitual use of tobacco throughout the trial and follow-up. - Have a mental illness that could prevent completion of the study or protocol questionnaires. If subjects with psychiatric disease are stable, then they should be allowed to participate in the trial. - Neurological diseases including unstable diseases or disease which renders subjects unable to give informed consent which renders unable to give informed consent. (Subjects with well controlled epilepsy should not be excluded.) |
Country | Name | City | State |
---|---|---|---|
United States | University Hospitals Cleveland Medical Center | Cleveland | Ohio |
Lead Sponsor | Collaborator |
---|---|
University Hospitals Cleveland Medical Center |
United States,
Bendtsen M, Bünger CE, Zou X, Foldager C, Jørgensen HS. Autologous stem cell therapy maintains vertebral blood flow and contrast diffusion through the endplate in experimental intervertebral disc degeneration. Spine (Phila Pa 1976). 2011 Mar 15;36(6):E373-9. doi: 10.1097/BRS.0b013e3181dce34c. — View Citation
Beurskens AJHM, de Vet HCW, Köke AJA. Responsiveness of functional status in low back pain: a comparison of different instruments. Pain. 1996 Apr;65(1):71-76. doi: 10.1016/0304-3959(95)00149-2. — View Citation
Bogduk N, Karasek M. Two-year follow-up of a controlled trial of intradiscal electrothermal anuloplasty for chronic low back pain resulting from internal disc disruption. Spine J. 2002 Sep-Oct;2(5):343-50. — View Citation
Bombardier C, Hayden J, Beaton DE. Minimal clinically important difference. Low back pain: outcome measures. J Rheumatol. 2001 Feb;28(2):431-8. Review. — View Citation
Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician. 2008 May-Jun;11(3):343-53. — View Citation
Cheung KM, Karppinen J, Chan D, Ho DW, Song YQ, Sham P, Cheah KS, Leong JC, Luk KD. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila Pa 1976). 2009 Apr 20;34(9):934-40. doi: 10.1097/BRS.0b013e3181a01b3f. — View Citation
Chinnadurai R, Copland IB, Garcia MA, Petersen CT, Lewis CN, Waller EK, Kirk AD, Galipeau J. Cryopreserved Mesenchymal Stromal Cells Are Susceptible to T-Cell Mediated Apoptosis Which Is Partly Rescued by IFN? Licensing. Stem Cells. 2016 Sep;34(9):2429-42. doi: 10.1002/stem.2415. Epub 2016 Jul 4. — View Citation
Chinnadurai R, Garcia MA, Sakurai Y, Lam WA, Kirk AD, Galipeau J, Copland IB. Actin cytoskeletal disruption following cryopreservation alters the biodistribution of human mesenchymal stromal cells in vivo. Stem Cell Reports. 2014 Jun 6;3(1):60-72. doi: 10.1016/j.stemcr.2014.05.003. eCollection 2014 Jul 8. — View Citation
Chou R, Baisden J, Carragee EJ, Resnick DK, Shaffer WO, Loeser JD. Surgery for low back pain: a review of the evidence for an American Pain Society Clinical Practice Guideline. Spine (Phila Pa 1976). 2009 May 1;34(10):1094-109. doi: 10.1097/BRS.0b013e3181a105fc. Review. — View Citation
Cousins JP, Haughton VM. Magnetic resonance imaging of the spine. J Am Acad Orthop Surg. 2009 Jan;17(1):22-30. Review. — View Citation
Crevensten G, Walsh AJ, Ananthakrishnan D, Page P, Wahba GM, Lotz JC, Berven S. Intervertebral disc cell therapy for regeneration: mesenchymal stem cell implantation in rat intervertebral discs. Ann Biomed Eng. 2004 Mar;32(3):430-4. — View Citation
Fairbank JC, Pynsent PB. The Oswestry Disability Index. Spine (Phila Pa 1976). 2000 Nov 15;25(22):2940-52; discussion 2952. Review. — View Citation
Fibbe WE, Noort WA. Mesenchymal stem cells and hematopoietic stem cell transplantation. Ann N Y Acad Sci. 2003 May;996:235-44. Review. — View Citation
Foster NE, Thomas E, Bishop A, Dunn KM, Main CJ. Distinctiveness of psychological obstacles to recovery in low back pain patients in primary care. Pain. 2010 Mar;148(3):398-406. doi: 10.1016/j.pain.2009.11.002. Epub 2009 Dec 22. — View Citation
François M, Copland IB, Yuan S, Romieu-Mourez R, Waller EK, Galipeau J. Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-? licensing. Cytotherapy. 2012 Feb;14(2):147-52. doi: 10.3109/14653249.2011.623691. Epub 2011 Oct 27. — View Citation
Freeman BJ, Fraser RD, Cain CM, Hall DJ, Chapple DC. A randomized, double-blind, controlled trial: intradiscal electrothermal therapy versus placebo for the treatment of chronic discogenic low back pain. Spine (Phila Pa 1976). 2005 Nov 1;30(21):2369-77; discussion 2378. — View Citation
Freeman BJ, Mehdian R. Intradiscal electrothermal therapy, percutaneous discectomy, and nucleoplasty: what is the current evidence? Curr Pain Headache Rep. 2008 Jan;12(1):14-21. Review. — View Citation
Freimark D, Czermak P. Cell-based regeneration of intervertebral disc defects: review and concepts. Int J Artif Organs. 2009 Apr;32(4):197-203. Review. — View Citation
Frymoyer JW, Cats-Baril WL. An overview of the incidences and costs of low back pain. Orthop Clin North Am. 1991 Apr;22(2):263-71. Review. — View Citation
Ganey T, Libera J, Moos V, Alasevic O, Fritsch KG, Meisel HJ, Hutton WC. Disc chondrocyte transplantation in a canine model: a treatment for degenerated or damaged intervertebral disc. Spine (Phila Pa 1976). 2003 Dec 1;28(23):2609-20. — View Citation
Gorensek M, Jaksimovic C, Kregar-Velikonja N, Gorensek M, Knezevic M, Jeras M, Pavlovcic V, Cör A. Nucleus pulposus repair with cultured autologous elastic cartilage derived chondrocytes. Cell Mol Biol Lett. 2004;9(2):363-73. — View Citation
Gruber HE, Johnson TL, Leslie K, Ingram JA, Martin D, Hoelscher G, Banks D, Phieffer L, Coldham G, Hanley EN Jr. Autologous intervertebral disc cell implantation: a model using Psammomys obesus, the sand rat. Spine (Phila Pa 1976). 2002 Aug 1;27(15):1626-33. — View Citation
Hägg O, Fritzell P, Nordwall A; Swedish Lumbar Spine Study Group. The clinical importance of changes in outcome scores after treatment for chronic low back pain. Eur Spine J. 2003 Feb;12(1):12-20. Epub 2002 Oct 24. — View Citation
Helm S, Hayek SM, Benyamin RM, Manchikanti L. Systematic review of the effectiveness of thermal annular procedures in treating discogenic low back pain. Pain Physician. 2009 Jan-Feb;12(1):207-32. Review. — View Citation
Henriksson HB, Svanvik T, Jonsson M, Hagman M, Horn M, Lindahl A, Brisby H. Transplantation of human mesenchymal stems cells into intervertebral discs in a xenogeneic porcine model. Spine (Phila Pa 1976). 2009 Jan 15;34(2):141-8. doi: 10.1097/BRS.0b013e31818f8c20. — View Citation
Hilibrand AS, Robbins M. Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J. 2004 Nov-Dec;4(6 Suppl):190S-194S. Review. — View Citation
Hiyama A, Mochida J, Sakai D. Stem cell applications in intervertebral disc repair. Cell Mol Biol (Noisy-le-grand). 2008 Oct 26;54(1):24-32. Review. — View Citation
Jaeschke R, Singer J, Guyatt GH. Measurement of health status. Ascertaining the minimal clinically important difference. Control Clin Trials. 1989 Dec;10(4):407-15. — View Citation
Julious SA, Sample size of 12 per group rule of thumb for a pilot study. Pharmaceutical Statistics. 2005 4:287-291. doi:1 0.1002/pst.185.
Kjaer P, Korsholm L, Bendix T, Sorensen JS, Leboeuf-Yde C. Modic changes and their associations with clinical findings. Eur Spine J. 2006 Sep;15(9):1312-9. Epub 2006 Aug 9. — View Citation
Kjaer P, Leboeuf-Yde C, Korsholm L, Sorensen JS, Bendix T. Magnetic resonance imaging and low back pain in adults: a diagnostic imaging study of 40-year-old men and women. Spine (Phila Pa 1976). 2005 May 15;30(10):1173-80. — View Citation
Koç ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant. 2002 Aug;30(4):215-22. — View Citation
Koç ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol. 2000 Jan;18(2):307-16. — View Citation
Koç ON, Lazarus HM. Mesenchymal stem cells: heading into the clinic. Bone Marrow Transplant. 2001 Feb;27(3):235-9. Review. — View Citation
Koç ON, Peters C, Aubourg P, Raghavan S, Dyhouse S, DeGasperi R, Kolodny EH, Yoseph YB, Gerson SL, Lazarus HM, Caplan AI, Watkins PA, Krivit W. Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol. 1999 Nov;27(11):1675-81. — View Citation
Kvarstein G, Måwe L, Indahl A, Hol PK, Tennøe B, Digernes R, Stubhaug A, Tønnessen TI, Beivik H. A randomized double-blind controlled trial of intra-annular radiofrequency thermal disc therapy--a 12-month follow-up. Pain. 2009 Oct;145(3):279-286. doi: 10.1016/j.pain.2009.05.001. Epub 2009 Aug 3. — View Citation
Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, Granton J, Stewart DJ; Canadian Critical Care Trials Group. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One. 2012;7(10):e47559. doi: 10.1371/journal.pone.0047559. Epub 2012 Oct 25. Review. — View Citation
Lauridsen HH, Hartvigsen J, Manniche C, Korsholm L, Grunnet-Nilsson N. Responsiveness and minimal clinically important difference for pain and disability instruments in low back pain patients. BMC Musculoskelet Disord. 2006 Oct 25;7:82. — View Citation
Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant. 1995 Oct;16(4):557-64. — View Citation
Lazarus HM, Koc ON, Devine SM, Curtin P, Maziarz RT, Holland HK, Shpall EJ, McCarthy P, Atkinson K, Cooper BW, Gerson SL, Laughlin MJ, Loberiza FR Jr, Moseley AB, Bacigalupo A. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant. 2005 May;11(5):389-98. — View Citation
Lee Z, Dennis JE, Gerson SL. Imaging stem cell implant for cellular-based therapies. Exp Biol Med (Maywood). 2008 Aug;233(8):930-40. doi: 10.3181/0709-MR-234. Epub 2008 May 14. Review. — View Citation
Leung VY, Chan D, Cheung KM. Regeneration of intervertebral disc by mesenchymal stem cells: potentials, limitations, and future direction. Eur Spine J. 2006 Aug;15 Suppl 3:S406-13. Epub 2006 Jul 15. Review. — View Citation
Love Z, Wang F, Dennis J, Awadallah A, Salem N, Lin Y, Weisenberger A, Majewski S, Gerson S, Lee Z. Imaging of mesenchymal stem cell transplant by bioluminescence and PET. J Nucl Med. 2007 Dec;48(12):2011-20. Epub 2007 Nov 15. — View Citation
Luo W, Xiong W, Qiu M, Lv Y, Li Y, Li F. Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype utilizing simulated microgravity In vitro. J Huazhong Univ Sci Technolog Med Sci. 2011 Apr;31(2):199. doi: 10.1007/s11596-011-0252-3. Epub 2011 Apr 20. — View Citation
Madigan L, Vaccaro AR, Spector LR, Milam RA. Management of symptomatic lumbar degenerative disk disease. J Am Acad Orthop Surg. 2009 Feb;17(2):102-11. Review. — View Citation
Maniadakis N, Gray A. The economic burden of back pain in the UK. Pain. 2000 Jan;84(1):95-103. doi: 10.1016/S0304-3959(99)00187-6. — View Citation
Maughan EF, Lewis JS. Outcome measures in chronic low back pain. Eur Spine J. 2010 Sep;19(9):1484-94. doi: 10.1007/s00586-010-1353-6. Epub 2010 Apr 17. — View Citation
Meisel HJ, Ganey T, Hutton WC, Libera J, Minkus Y, Alasevic O. Clinical experience in cell-based therapeutics: intervention and outcome. Eur Spine J. 2006 Aug;15 Suppl 3:S397-405. Epub 2006 Jul 19. — View Citation
Meisel HJ, Siodla V, Ganey T, Minkus Y, Hutton WC, Alasevic OJ. Clinical experience in cell-based therapeutics: disc chondrocyte transplantation A treatment for degenerated or damaged intervertebral disc. Biomol Eng. 2007 Feb;24(1):5-21. Epub 2006 Jul 21. — View Citation
Mobasheri A, Csaki C, Clutterbuck AL, Rahmanzadeh M, Shakibaei M. Mesenchymal stem cells in connective tissue engineering and regenerative medicine: applications in cartilage repair and osteoarthritis therapy. Histol Histopathol. 2009 Mar;24(3):347-66. doi: 10.14670/HH-24.347. Review. — View Citation
Modic MT, Masaryk TJ, Ross JS, Carter JR. Imaging of degenerative disk disease. Radiology. 1988 Jul;168(1):177-86. Review. — View Citation
Moll G, Alm JJ, Davies LC, von Bahr L, Heldring N, Stenbeck-Funke L, Hamad OA, Hinsch R, Ignatowicz L, Locke M, Lönnies H, Lambris JD, Teramura Y, Nilsson-Ekdahl K, Nilsson B, Le Blanc K. Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? Stem Cells. 2014 Sep;32(9):2430-42. doi: 10.1002/stem.1729. — View Citation
Monfort J, Garcia-Giralt N, López-Armada MJ, Monllau JC, Bonilla A, Benito P, Blanco FJ. Decreased metalloproteinase production as a response to mechanical pressure in human cartilage: a mechanism for homeostatic regulation. Arthritis Res Ther. 2006;8(5):R149. — View Citation
Murphy CL, Thoms BL, Vaghjiani RJ, Lafont JE. Hypoxia. HIF-mediated articular chondrocyte function: prospects for cartilage repair. Arthritis Res Ther. 2009;11(1):213. doi: 10.1186/ar2574. Epub 2009 Feb 5. Review. — View Citation
Mwale F, Iatridis JC, Antoniou J. Quantitative MRI as a diagnostic tool of intervertebral disc matrix composition and integrity. Eur Spine J. 2008 Dec;17 Suppl 4:432-40. doi: 10.1007/s00586-008-0744-4. Epub 2008 Nov 13. Review. — View Citation
Nesti LJ, Li WJ, Shanti RM, Jiang YJ, Jackson W, Freedman BA, Kuklo TR, Giuliani JR, Tuan RS. Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold (HANFS) amalgam. Tissue Eng Part A. 2008 Sep;14(9):1527-37. doi: 10.1089/ten.tea.2008.0215. — View Citation
Nomura T, Mochida J, Okuma M, Nishimura K, Sakabe K. Nucleus pulposus allograft retards intervertebral disc degeneration. Clin Orthop Relat Res. 2001 Aug;(389):94-101. — View Citation
Okuma M, Mochida J, Nishimura K, Sakabe K, Seiki K. Reinsertion of stimulated nucleus pulposus cells retards intervertebral disc degeneration: an in vitro and in vivo experimental study. J Orthop Res. 2000 Nov;18(6):988-97. — View Citation
Orozco L, Soler R, Morera C, Alberca M, Sánchez A, García-Sancho J. Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation. 2011 Oct 15;92(7):822-8. doi: 10.1097/TP.0b013e3182298a15. — View Citation
Ostelo RW, Deyo RA, Stratford P, Waddell G, Croft P, Von Korff M, Bouter LM, de Vet HC. Interpreting change scores for pain and functional status in low back pain: towards international consensus regarding minimal important change. Spine (Phila Pa 1976). 2008 Jan 1;33(1):90-4. doi: 10.1097/BRS.0b013e31815e3a10. — View Citation
Perry J, Haughton V, Anderson PA, Wu Y, Fine J, Mistretta C. The value of T2 relaxation times to characterize lumbar intervertebral disks: preliminary results. AJNR Am J Neuroradiol. 2006 Feb;27(2):337-42. — View Citation
Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2001 Sep 1;26(17):1873-8. — View Citation
Prologo JD, Pirasteh A, Tenley N, Yuan L, Corn D, Hart D, Love Z, Lazarus HM, Lee Z. Percutaneous image-guided delivery for the transplantation of mesenchymal stem cells in the setting of degenerated intervertebral discs. J Vasc Interv Radiol. 2012 Aug;23(8):1084-1088.e6. doi: 10.1016/j.jvir.2012.04.032. Epub 2012 Jun 26. — View Citation
Recommendations of the International Conference on Harmonization. . in Fed Regist. 1997.
Resnick DK, Watters WC. Lumbar disc arthroplasty: a critical review. Clin Neurosurg. 2007;54:83-7. Review. — View Citation
Richardson SM, Hoyland JA, Mobasheri R, Csaki C, Shakibaei M, Mobasheri A. Mesenchymal stem cells in regenerative medicine: opportunities and challenges for articular cartilage and intervertebral disc tissue engineering. J Cell Physiol. 2010 Jan;222(1):23-32. doi: 10.1002/jcp.21915. Review. — View Citation
Rocchi MB, Sisti D, Benedetti P, Valentini M, Bellagamba S, Federici A. Critical comparison of nine different self-administered questionnaires for the evaluation of disability caused by low back pain. Eura Medicophys. 2005 Dec;41(4):275-81. — View Citation
Sakai D, Mochida J, Iwashina T, Watanabe T, Nakai T, Ando K, Hotta T. Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine (Phila Pa 1976). 2005 Nov 1;30(21):2379-87. — View Citation
Sakai D, Mochida J, Yamamoto Y, Nomura T, Okuma M, Nishimura K, Nakai T, Ando K, Hotta T. Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials. 2003 Sep;24(20):3531-41. — View Citation
Sakai D. Future perspectives of cell-based therapy for intervertebral disc disease. Eur Spine J. 2008 Dec;17 Suppl 4:452-8. doi: 10.1007/s00586-008-0743-5. Epub 2008 Nov 13. Review. — View Citation
Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells. 2010 Mar 31;28(3):585-96. doi: 10.1002/stem.269. Review. — View Citation
See EY, Toh SL, Goh JC. Simulated intervertebral disc-like assembly using bone marrow-derived mesenchymal stem cell sheets and silk scaffolds for annulus fibrosus regeneration. J Tissue Eng Regen Med. 2012 Jul;6(7):528-35. doi: 10.1002/term.457. Epub 2011 Jul 29. — View Citation
Serigano K, Sakai D, Hiyama A, Tamura F, Tanaka M, Mochida J. Effect of cell number on mesenchymal stem cell transplantation in a canine disc degeneration model. J Orthop Res. 2010 Oct;28(10):1267-75. doi: 10.1002/jor.21147. — View Citation
Shuff C, An HS. Artificial disc replacement: the new solution for discogenic low back pain? Am J Orthop (Belle Mead NJ). 2005 Jan;34(1):8-12. Review. — View Citation
Sobajima S, Vadala G, Shimer A, Kim JS, Gilbertson LG, Kang JD. Feasibility of a stem cell therapy for intervertebral disc degeneration. Spine J. 2008 Nov-Dec;8(6):888-96. Epub 2007 Dec 21. — View Citation
Solchaga LA, Goldberg VM, Caplan AI. Cartilage regeneration using principles of tissue engineering. Clin Orthop Relat Res. 2001 Oct;(391 Suppl):S161-70. Review. — View Citation
Solchaga LA, Penick K, Goldberg VM, Caplan AI, Welter JF. Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells. Tissue Eng Part A. 2010 Mar;16(3):1009-19. doi: 10.1089/ten.TEA.2009.0100. — View Citation
Solchaga LA, Temenoff JS, Gao J, Mikos AG, Caplan AI, Goldberg VM. Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds. Osteoarthritis Cartilage. 2005 Apr;13(4):297-309. — View Citation
Solchaga LA, Welter JF, Lennon DP, Caplan AI. Generation of pluripotent stem cells and their differentiation to the chondrocytic phenotype. Methods Mol Med. 2004;100:53-68. — View Citation
Stoyanov JV, Gantenbein-Ritter B, Bertolo A, Aebli N, Baur M, Alini M, Grad S. Role of hypoxia and growth and differentiation factor-5 on differentiation of human mesenchymal stem cells towards intervertebral nucleus pulposus-like cells. Eur Cell Mater. 2011 Jun 20;21:533-47. — View Citation
Stratford PW, Binkley JM, Riddle DL, Guyatt GH. Sensitivity to change of the Roland-Morris Back Pain Questionnaire: part 1. Phys Ther. 1998 Nov;78(11):1186-96. — View Citation
Takahashi K, Aoki Y, Ohtori S. Resolving discogenic pain. Eur Spine J. 2008 Dec;17 Suppl 4:428-31. doi: 10.1007/s00586-008-0752-4. Epub 2008 Nov 13. Review. — View Citation
Thompson JP, Pearce RH, Schechter MT, Adams ME, Tsang IK, Bishop PB. Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine (Phila Pa 1976). 1990 May;15(5):411-5. — View Citation
Thompson KJ, Dagher AP, Eckel TS, Clark M, Reinig JW. Modic changes on MR images as studied with provocative diskography: clinical relevance--a retrospective study of 2457 disks. Radiology. 2009 Mar;250(3):849-55. doi: 10.1148/radiol.2503080474. — View Citation
Trounson A. New perspectives in human stem cell therapeutic research. BMC Med. 2009 Jun 11;7:29. doi: 10.1186/1741-7015-7-29. Review. — View Citation
Vadalà G, Sowa G, Hubert M, Gilbertson LG, Denaro V, Kang JD. Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation. J Tissue Eng Regen Med. 2012 May;6(5):348-55. doi: 10.1002/term.433. Epub 2011 Jun 13. — View Citation
Walker J 3rd, El Abd O, Isaac Z, Muzin S. Discography in practice: a clinical and historical review. Curr Rev Musculoskelet Med. 2008 Jun;1(2):69-83. doi: 10.1007/s12178-007-9009-9. — View Citation
Wang F, Dennis JE, Awadallah A, Solchaga LA, Molter J, Kuang Y, Salem N, Lin Y, Tian H, Kolthammer JA, Kim Y, Love ZB, Gerson SL, Lee Z. Transcriptional profiling of human mesenchymal stem cells transduced with reporter genes for imaging. Physiol Genomics. 2009 Mar 3;37(1):23-34. doi: 10.1152/physiolgenomics.00300.2007. Epub 2008 Dec 30. — View Citation
Watanabe A, Benneker LM, Boesch C, Watanabe T, Obata T, Anderson SE. Classification of intervertebral disk degeneration with axial T2 mapping. AJR Am J Roentgenol. 2007 Oct;189(4):936-42. — View Citation
Welter JF, Solchaga LA, Penick KJ. Simplification of aggregate culture of human mesenchymal stem cells as a chondrogenic screening assay. Biotechniques. 2007 Jun;42(6):732, 734-7. — View Citation
Welter JF, Solchaga LA, Stewart MC. High-efficiency nonviral transfection of primary chondrocytes. Methods Mol Med. 2004;100:129-46. — View Citation
Williams JD, P.K., ed. Lower Back Pain and Disorders of Intervertebral Discs. 11 ed. Campbell's Operative Orthopaedics., ed. C.a. Beaty. 2007, Mosby.
Xu X, Liu Y, Cui Z, Wei Y, Zhang L. Effects of osmotic and cold shock on adherent human mesenchymal stem cells during cryopreservation. J Biotechnol. 2012 Dec 31;162(2-3):224-31. doi: 10.1016/j.jbiotec.2012.09.004. Epub 2012 Sep 16. — View Citation
Yamamoto Y, Mochida J, Sakai D, Nakai T, Nishimura K, Kawada H, Hotta T. Upregulation of the viability of nucleus pulposus cells by bone marrow-derived stromal cells: significance of direct cell-to-cell contact in coculture system. Spine (Phila Pa 1976). 2004 Jul 15;29(14):1508-14. — View Citation
Yang H, Wu J, Liu J, Ebraheim M, Castillo S, Liu X, Tang T, Ebraheim NA. Transplanted mesenchymal stem cells with pure fibrinous gelatin-transforming growth factor-beta1 decrease rabbit intervertebral disc degeneration. Spine J. 2010 Sep;10(9):802-10. doi: 10.1016/j.spinee.2010.06.019. Epub 2010 Jul 24. — View Citation
Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM, Johnstone B. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am. 1998 Dec;80(12):1745-57. — View Citation
Yoshikawa T, Ueda Y, Miyazaki K, Koizumi M, Takakura Y. Disc regeneration therapy using marrow mesenchymal cell transplantation: a report of two case studies. Spine (Phila Pa 1976). 2010 May 15;35(11):E475-80. doi: 10.1097/BRS.0b013e3181cd2cf4. — View Citation
Zhang YG, Guo X, Xu P, Kang LL, Li J. Bone mesenchymal stem cells transplanted into rabbit intervertebral discs can increase proteoglycans. Clin Orthop Relat Res. 2005 Jan;(430):219-26. — View Citation
* Note: There are 98 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Rate of treatment related adverse events | assessing for worsening of patients' baseline symptoms or functions (will be considered an AE); (also general AE events), particularly AE events related to the procedures/treatment. All AEs will be assessed by common terminology criteria for adverse events. . | From baseline/randomization until the date of first documented progression or date of death from any cause, whichever came first, assessed up to 1 year. | |
Secondary | Changes in Pain -Visual Analogue Scale (VAS) for back pain | Temporal evaluation of pain before and after the procedure will be analyzed through documentation of Visual Analogue Scale of back pain (VAS).
The VAS is a measurement instrument that tries to measure a characteristic or attitude that is believed to range across a continuum of values and cannot easily be directly measured. It is a unidimensional measure of pain intensity The instrument is presented by a straight horizontal line of fixed length, usually 100 mm. The ends are defined as the extreme limits of the parameter to be measured (symptom, pain, health) orientated from the left (worst) to the right (best). Using a ruler, the score is determined by measuring the distance (mm) on the 10-cm line between the "no pain" anchor and the patient's mark, providing a range of scores from 0-100. A higher score indicates greater pain intensity. No pain (0-4 mm), mild pain (5-44 mm), moderate pain (45-74 mm), and severe pain (75-100 mm) (11). |
Baseline, 1 month, 6 months and 1 year | |
Secondary | Changes in Pain - Oswestry Disability Index (ODI) scores over time | Temporal evaluation of pain before and after the procedure will be analyzed through documentation of Oswestry Disability Index (ODI) scores over time. Scoring - For each section the total possible score is 5: if the first statement is marked the section score = 0; if the last statement is marked, it = 5. If all 10 sections are completed the score is calculated. Interpretation scores go from minimal 0% disability to 100% disability. | Baseline, 1 month, 6 months and 1 year | |
Secondary | changes in Quality of life - Short form Health Survey 36 (SF-36) | Temporal evaluation of quality of life before and after the procedure will be analyzed through documentation of SF36 quality of life questionnaire scores. Although this study is not cancer related, this questionnaire is a validated instrument for the evaluation of treatment related impact on quality of life - a critical outcome measure. Scoring - consisting of eight scaled scores which are the weighted sums of the questions in their section. Each scale is directly transformed into a 0-100 scale. The lower the score the more disability. The higher the score the less disability i.e., a score of zero is equivalent to maximum disability and a score of 100 is equivalent to no disability. | Baseline, 1 month, 6 months and 1 year | |
Secondary | changes in MRI monitoring of transplant site | Magnetic resonance T2 mapping will be performed on all discs undergoing treatment for evaluation of potential quantitative, reproducible imaging change following treatment. | Baseline and 1 year, if a subject were to withdraw prior to completion of the study and received MSC an MRI with be obtained. |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04530071 -
Evaluation of Safety, Tolerability, and Efficacy of CordSTEM-DD in Patients With Chronic Low Back Pain
|
Phase 1/Phase 2 | |
Not yet recruiting |
NCT05971329 -
Pilot Study of ZetaFuse™ Bone Graft for the Treatment of Cervical Degenerative Disc Disease
|
Early Phase 1 | |
Active, not recruiting |
NCT01213953 -
Isolation and Authentication of Mesenchymal Stem Cell-like Progenitor Cells From the Degenerated Intervertebral Disc of Lumbar Spine
|
N/A | |
Not yet recruiting |
NCT06025175 -
Low Level Lazer Therapy Effect on Vertebral Artery Blood Flow in Elderly With Cervical Disc Degeneration
|
N/A | |
Completed |
NCT05641857 -
Lumbar Spine on MRI and Low Back Pain in Elite Cross-country Skiers
|
||
Active, not recruiting |
NCT05412277 -
VIA Disc Nucleus Pulposus Older Patients Pilot
|
N/A | |
Active, not recruiting |
NCT04559295 -
Bone Marrow Concentrate (BMC) Injection in Intervertebral Discs
|
Phase 2/Phase 3 | |
Terminated |
NCT01850771 -
Regenexx™ PL-Disc Versus Steroid Epidurals for Lumbar Radiculopathy
|
N/A | |
Not yet recruiting |
NCT06367855 -
Efficacy and Safety of Preemptive Intravenous Dexamethasone in MIS-TLIF : Double Blinded, Randomized Control Trial
|
Phase 4 | |
Completed |
NCT05059249 -
Effects of Mechanical Versus Manual Traction in the Management of Low Back Pain.
|
N/A | |
Recruiting |
NCT04621799 -
Fibrin for Chronic Multi-level Discogenic Low Back Pain
|
Phase 2/Phase 3 | |
Recruiting |
NCT04499105 -
Effectiveness and Safety of Mesenchymal Stem Cell (MSC) Implantation on Degenerative Discus Disease Patients
|
Phase 2 | |
Completed |
NCT03442374 -
Lumbar Spine Muscle Degeneration Inhibits Rehabilitation-Induced Muscle Recovery
|
N/A | |
Completed |
NCT05315375 -
Post-trauma Lumbar Vertebral Body Reconstruction Using Expandable Cages
|
||
Active, not recruiting |
NCT05201287 -
VIA Disc NP Pilot for Patients With Symptomatic Degenerated Discs
|
N/A | |
Enrolling by invitation |
NCT05745129 -
Applying Artificial Intelligence in Developing Personalized and Sustainable Healthcare for Spinal Disorders
|
||
Completed |
NCT04712487 -
Low-grade Infections of the Intervertebral Discs
|