Clinical Trials Logo

Diffuse Intrinsic Pontine Glioma clinical trials

View clinical trials related to Diffuse Intrinsic Pontine Glioma.

Filter by:

NCT ID: NCT03243461 Recruiting - Clinical trials for Diffuse Intrinsic Pontine Glioma

International Cooperative Phase III Trial of the HIT-HGG Study Group (HIT-HGG-2013)

HIT-HGG-2013
Start date: July 17, 2018
Phase: Phase 3
Study type: Interventional

The HIT-HGG-2013 trial offers an innovative high-quality diagnostics and science program for children and adolescents >3 years, suffering from one of the following types of high grade gliomas: 1. glioblastoma WHO grade IV (GBM) 2. diffuse midlineglioma histone 3 K27M mutated WHO grade IV (DMG) 3. anaplastic astrocytoma WHO grade III (AA) 4. diffuse intrinsic pontine glioma (DIPG) 5. gliomatosis cerebri (GC) For 1.-3. diagnosis has to be confirmed by neuropathological survey, for 4. and 5. diagnosis has to be confirmed by neuroradiological survey. In addition to standard treatment (radiotherapy and temozolomide chemotherapy) the effect of valproic acid which is traditionally used for treatment of seizure disorder, will be investigated. The aim of the trial will be to investigate whether this drug may increase the effects of radio- and chemotherapy, resulting in a better survival of the treated patients. Scientific studies provided evidence for anti-tumoral effects of valproic acid: the drug seems to be a so-called histondeacetylase inhibitor (HDAC inhibitor), controlling important genetic processes of tumor growth. Studies in cell culture, animals and first clinical trials in adults as well provided evidence for efficacy of valproic acid in the treatment of glioblastoma. Due to this we hope children and adolescents suffering from GBM, DMG, AA, DIPG und GC will benefit from the treatment, too. The aim of the HIT-HGG-2013 trial will be to compare the effects of Valproic acid with data of the HIT-HGG-2007 trial (children and adolescents with same diseases, only treated with simultaneous temozolomide radiochemotherapy). In the present study, it was originally planned to investigate the therapeutic efficiency and safety of valproic acid and the autophagy inhibitor chloroquine, both in addition to temozolomide therapy. Since distribution of Resochin junior (chloroquine phosphate) was terminated, recruitment of new patients was stopped on August 8, 2019. For continuation of the trial, the chloroquine arm was closed but the patients already recruited in this arm will be followed up.

NCT ID: NCT03126266 Recruiting - Clinical trials for Recurrent or Progressive Diffuse Intrinsic Pontine Glioma

Re-Irradiation of Progressive or Recurrent DIPG

Start date: April 15, 2017
Phase: N/A
Study type: Interventional

This is a single-arm, non-randomized study of re-irradiation of diffuse intrinsic pontine glioma (DIPG)

NCT ID: NCT03101813 Recruiting - Clinical trials for Diffuse Intrinsic Pontine Glioma

International Diffuse Intrinsic Pontine Glioma (DIPG)/Diffuse Midline Glioma (DMG) Registry and Repository

Start date: June 2012
Phase:
Study type: Observational

Doctors and other medical scientists want learn about the biology of DIPG/DMG and to develop better ways to diagnose and treat patients with DIPG/DMG. To do this, they need more information about the characteristics of DIPG/DMG tumors. Therefore, they want to establish a central location for clinical information and tumor tissue collected from DIPG/DMG patients. The purposes of this study are: - To enroll patients diagnosed with DIPG/DMG in the International DIPG/DMG Registry and Repository. - To provide a central location for clinical information, scans, and tissue samples from patients with DIPG/DMG enrolled in the registry. - To collect tissue samples in order to study how DIPG/DMG works on the molecular level. Researchers may use the tissue samples to study molecules such as proteins and DNA. Proteins are needed for the body to function properly and DNA is the molecule that carries our genetic information. Other researchers will be able to use the stored samples in the future to learn more about DIPG/DMG. The information researchers get from the research studies will be kept in the registry along with the clinical information. - To help investigators around the world to work together to make more consistent diagnosis and better design of future research studies. We hope this will lead to better treatments for DIPG/DMG in the future.

NCT ID: NCT03033992 Recruiting - Malignant Glioma Clinical Trials

Optune for Children With High-Grade Glioma or Ependymoma, and Optune With Radiation Therapy for Children With DIPG

Start date: April 4, 2017
Phase: N/A
Study type: Interventional

This is a multicenter trial of the Optune device to examine the feasibility and to describe the device-related toxicity in children with supratentorial high grade glioma (HGG) or ependymoma (Stratum 1) and to examine the feasibility and efficacy of concurrent Optune and standard focal radiation therapy (RT) in children with newly diagnosed diffuse intrinsic pontine glioma (DIPG) (Stratum 2).

NCT ID: NCT02899715 Recruiting - Clinical trials for Diffuse Intrinsic Pontine Glioma

Panobinostat in Treating Younger Patients With Progressive Diffuse Intrinsic Pontine Glioma

Start date: April 2016
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of panobinostat in treating younger patients with diffuse intrinsic pontine glioma that is growing, spreading, or getting worse (progressive). Panobinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT02359565 Recruiting - Malignant Glioma Clinical Trials

Pembrolizumab in Treating Younger Patients With Recurrent, Progressive, or Refractory High-Grade Gliomas, Diffuse Intrinsic Pontine Gliomas, Hypermutated Brain Tumors, Ependymoma or Medulloblastoma

Start date: May 22, 2015
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of pembrolizumab and to see how well it works in treating younger patients with high-grade gliomas (brain tumors that are generally expected to be fast growing and aggressive), diffuse intrinsic pontine gliomas (brain stem tumors), brain tumors with a high number of genetic mutations, ependymoma or medulloblastoma that have come back (recurrent), progressed, or have not responded to previous treatment (refractory). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may induce changes in the body's immune system, and may interfere with the ability of tumor cells to grow and spread.

NCT ID: NCT02233049 Recruiting - Clinical trials for Diffuse Intrinsic Pontine Glioma

Biological Medicine for Diffuse Intrinsic Pontine Glioma (DIPG) Eradication

BIOMEDE
Start date: October 2014
Phase: Phase 2
Study type: Interventional

Diffuse Intrinsic Pontine Gliomas (DIPG) appear almost exclusively in children and adolescents, representing 15 to 20% of posterior fossa tumours. Even if it is one of the most common malignant brain tumours, there are only 30 to 40 new cases per year in France. Their clinical presentation is stereotyped with a short clinical history and a unique MRI appearance that was usually considered as sufficient to establish the diagnosis. The prognosis of DIPG is always unfavourable; median overall survival is 9 to 10 months in general and most patients will die within two years after diagnosis (Kaplan 1996,Hargrave 2006). Malignant gliomas infiltrating the brainstem represent the greatest challenge of paediatric oncology; despite numerous collaborative studies performed, patients' survival has not significantly increased in thirty years (Hargrave 2009). There is no validated prognostic factor. There is currently no validated treatment except radiotherapy. Several targeted agents have been tested in DIPG (Pollack 2007 Haas-Kogan 2008, Geoerger, 2011), without knowing whether the target was present in the tumour. A critical review of the paradigms of these trials tells us that there are long term survivors in these studies that is to say patients who may have benefited from the tested therapy, but they are few. So far, the new therapies that have been tried were evaluated one after the other in search of a treatment that would be effective for all patients, measuring the treatment effect on median survival. They were all rejected as ineffective. However the investigators can challenge the endpoint to evaluate efficacy in these trials as the existence of long term survivors (> 18 months, for example) and their number should not been ignored, especially if targeted therapies are considered. The investigators propose a paradigm shift in the choice of treatment; the issue raised would be to give to each patient the treatment associated with the highest likelihood of efficacy based on the specific biological tumour profile. The development of targeted therapies for malignant gliomas infiltrating the brainstem has been hampered by the absence of biological data. It is therefore crucial to better understand the biology of these tumours. Despite the safety of the biopsy in brainstem tumours, most teams of paediatric neurosurgery limit the use of stereotactic biopsy only for clinically or radiologically unusual forms. Until recently, there has been no systematic genetic study at diagnosis to date and the few available data were confounded by the inclusion of autopsies or clinically and radiologically unusual cases (Louis, 1993; Gilbertson 2003; Okada, 2008; Zarghooni 2010; Broniscer, 2010; Wu, 2012 and Schwartzentruber, 2012). French teams gathered in the French Society of Paediatric Oncology and the European consortium "Innovative Therapies in Children with Cancer (ITCC)" decided a few years ago to perform biopsies of these tumours for diagnostic confirmation and to ensure the presence of certain therapeutic targets prior to a possible inclusion in a trial evaluating a targeted therapy (Geoerger, 2009; Geoerger, 2010). Part of this experiment was reported by the team of the Necker Hospital in Paris, confirming the low rate of complications of stereotactic biopsy procedure (Roujeau, 2007). The biopsy specimen analysis allowed practicing immunohistochemical, genomic (CGHarray), gene expression (transcriptome) and direct sequencing of candidate genes studies. In this study, the majority of patients will receive a treatment assumed to specifically target a biological abnormality identified on the biopsy. More importantly, patients will not receive a drug for which the identified target is absent. In this first step of the protocol, the patients will thus be allocated to one of the three treatment groups as follows: - If the tumor overexpresses EGFR without PTEN loss of expression, patients may receive erlotinib or dasatinib allocated by randomization (R1 randomisation). - If the tumor shows loss of PTEN expression without EGFR overexpression, patients may receive everolimus or dasatinib allocated by randomisation (R2 randomisation). - If the tumor shows both EGFR overexpression and loss of PTEN expression, patients may receive erlotinib, everolimus or dasatinib by randomisation (R3 randomisation). - If the tumor shows neither EGFR overexpression nor loss of PTEN expression (a very rare situation in our experience), patients will receive dasatinib (no randomisation). - If the biopsy assessment is not contributive, the treatment will be allocated by randomisation between erlotinib, everolimus and dasatinib (R3 randomisation).

NCT ID: NCT01837862 Recruiting - Clinical trials for Glioblastoma Multiforme

A Phase I Study of Mebendazole for the Treatment of Pediatric Gliomas

Start date: October 22, 2013
Phase: Phase 1/Phase 2
Study type: Interventional

This is a study to determine the safety and efficacy of the drug, mebendazole, when used in combination with standard chemotherapy drugs for the treatment of pediatric brain tumors. Mebendazole is a drug used to treat infections with intestinal parasites and has a long track record of safety in humans. Recently, it was discovered that mebendazole may be effective in treating cancer as well, in particular brain tumors. Studies using both cell cultures and mouse models demonstrated that mebendazole was effective in decreasing the growth of brain tumor cells. This study focuses on the treatment of a category of brain tumors called gliomas. Low-grade gliomas are tumors arising from the glial cells of the central nervous system and are characterized by slower, less aggressive growth than that of high-grade gliomas. Some low-grade gliomas have a more aggressive biology and an increased likelihood of resistance or recurrence. Low-grade gliomas are often able to be treated by observation alone if they receive a total surgical resection. However, tumors which are only partially resected and continue to grow or cause symptoms, or those which recur following total resection require additional treatment, such as chemotherapy. Due to their more aggressive nature, pilomyxoid astrocytomas, even when totally resected, will often be treated with chemotherapy. The current first-line treatment at our institution for these low-grade gliomas involves a three-drug chemotherapy regimen of vincristine, carboplatin, and temozolomide. However, based on our data from our own historical controls, over 50% of patients with pilomyxoid astrocytomas will continue to have disease progression while on this treatment. We believe that mebendazole in combination with vincristine, carboplatin, and temozolomide may provide an additional therapeutic benefit with increased progression-free and overall survival for low-grade glioma patients, particularly for those with pilomyxoid astrocytomas. High grade gliomas are more aggressive tumors with poor prognoses. The standard therapy is radiation therapy. A variety of adjuvant chemotherapeutic combinations have been used, but with disappointing results. For high-grade gliomas this study will add mebendazole to the established combination of bevacizumab and irinotecan to determine this combinations safety and efficacy

NCT ID: NCT01106794 Recruiting - Clinical trials for Diffuse Intrinsic Pontine Glioma

Molecular Analysis of Samples From Patients With Diffuse Intrinsic Pontine Glioma and Brainstem Glioma

Start date: April 2010
Phase:
Study type: Observational

The purpose of this study is to prospectively collect specimens from pediatric patients with diffuse intrinsic pontine glioma or brainstem glioma, either during therapy or at autopsy, in order to characterize the molecular abnormalities of this tumor.