Clinical Trials Logo

Diffuse Intrinsic Pontine Glioma clinical trials

View clinical trials related to Diffuse Intrinsic Pontine Glioma.

Filter by:

NCT ID: NCT05123534 Recruiting - Clinical trials for Diffuse Intrinsic Pontine Glioma

A Phase 2 Study of Sonodynamic Therapy Using SONALA-001 and Exablate 4000 Type 2.0 in Patients With DIPG

Start date: August 12, 2022
Phase: Phase 2
Study type: Interventional

The primary objectives of this trial are to evaluate the safety and tolerability of sonodynamic therapy (SDT) using SONALA-001 and Exablate Type 2.0 device and to determine the maximum tolerated dose (MTD) or recommended phase 2 dose (RP2D) of MR-Guided Focused Ultrasound (MRgFUS) energy in combination with SONALA-001 in subjects with diffuse intrinsic pontine glioma Funding Source - FDA OOPD

NCT ID: NCT05099003 Recruiting - Glioblastoma Clinical Trials

A Study of the Drug Selinexor With Radiation Therapy in Patients With Newly-Diagnosed Diffuse Intrinsic Pontine (DIPG) Glioma and High-Grade Glioma (HGG)

Start date: May 31, 2022
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial tests the safety, side effects, and best dose of selinexor given in combination with standard radiation therapy in treating children and young adults with newly diagnosed diffuse intrinsic pontine glioma (DIPG) or high-grade glioma (HGG) with a genetic change called H3 K27M mutation. It also tests whether combination of selinexor and standard radiation therapy works to shrink tumors in this patient population. Glioma is a type of cancer that occurs in the brain or spine. Glioma is considered high risk (or high-grade) when it is growing and spreading quickly. The term, risk, refers to the chance of the cancer coming back after treatment. DIPG is a subtype of HGG that grows in the pons (a part of the brainstem that controls functions like breathing, swallowing, speaking, and eye movements). This trial has two parts. The only difference in treatment between the two parts is that some subjects treated in Part 1 may receive a different dose of selinexor than the subjects treated in Part 2. In Part 1 (also called the Dose-Finding Phase), investigators want to determine the dose of selinexor that can be given without causing side effects that are too severe. This dose is called the maximum tolerated dose (MTD). In Part 2 (also called the Efficacy Phase), investigators want to find out how effective the MTD of selinexor is against HGG or DIPG. Selinexor blocks a protein called CRM1, which may help keep cancer cells from growing and may kill them. It is a type of small molecule inhibitor called selective inhibitors of nuclear export (SINE). Radiation therapy uses high energy to kill tumor cells and shrink tumors. The combination of selinexor and radiation therapy may be effective in treating patients with newly-diagnosed DIPG and H3 K27M-Mutant HGG.

NCT ID: NCT05009992 Recruiting - Clinical trials for Diffuse Intrinsic Pontine Glioma

Combination Therapy for the Treatment of Diffuse Midline Gliomas

Start date: October 20, 2021
Phase: Phase 2
Study type: Interventional

This phase II trial determines if the combination of ONC201 with different drugs, panobinostat or paxalisib, is effective for treating participants with diffuse midline gliomas (DMGs). Despite years of research, little to no progress has been made to improve outcomes for participants with DMGs, and there are few treatment options. ONC201, panobinostat, and paxalisib are all enzyme inhibitors that may stop the growth of tumor cells by clocking some of the enzymes needed for cell growth. This phase II trial assesses different combinations of these drugs for the treatment of DMGs.

NCT ID: NCT04978727 Recruiting - Clinical trials for Glioblastoma Multiforme

A Pilot Study of SurVaxM in Children Progressive or Relapsed Medulloblastoma, High Grade Glioma, Ependymoma and Newly Diagnosed Diffuse Intrinsic Pontine Glioma

Start date: July 1, 2022
Phase: Phase 1
Study type: Interventional

Patients will receive a vaccine called SurVaxM on this study. While vaccines are usually thought of as ways to prevent diseases, vaccines can also be used to treat cancer. SurVaxM is designed to tell the body's immune system to look for tumor cells that express a protein called survivin and destroy them. The survivin protein can be found on up to 95% of glioblastomas and other types of cancer but is not found in normal cells. If the body's immune system knows to destroy cells that express survivin, it may help to control tumor growth and recurrence. SurVaxM will be mixed with Montanide ISA 51 before it is given. Montanide ISA 51 is an ingredient that helps create a stronger immune response in people, which helps the vaccine work better. This study has two phases: Priming and Maintenance. During the Priming Phase, patients will get one dose of SurVaxM combined with Montanide ISA 51 through a subcutaneous injection (a shot under the skin) at the start of the study and every 2 weeks for 6 weeks (for a total of 4 doses). At the same time that patients get the SurVaxM/Montanide ISA 51 injection, they will also get a second subcutaneous injection of a medicine called sargramostim. Sargramostim is given close to the SurVaxM//Montanide ISA 51 injection and works to stimulate the immune system to help the SurVaxM/Montanide ISA 51 work more effectively. If a patient completes the Priming Phase without severe side effects and his or her disease stays the same or improves, he or she can continue to the Maintenance Phase. During the Maintenance Phase, the patient will get a SurVaxM/Montanide ISA 51 dose along with a sargramostim dose about every 8 weeks for up to two years. After a patient finishes the study treatment, the doctor and study team will continue to follow his/her condition and watch for side effects up to 3 years following the last dose of SurVaxM/Montanide ISA 51. Patients will be seen in clinic every 3 months during the follow-up period.

NCT ID: NCT04943848 Recruiting - Clinical trials for Diffuse Intrinsic Pontine Glioma

rHSC-DIPGVax Plus Checkpoint Blockade for the Treatment of Newly Diagnosed DIPG and DMG

Start date: January 10, 2022
Phase: Phase 1
Study type: Interventional

This is a phase I, open label, plus expansion clinical trial evaluating the safety and tolerability of rHSC-DIPGVax in combination with BALSTILIMAB and ZALIFRELIMAB. rHSC-DIPGVax is an off-the-shelf neo-antigen heat shock protein containing 16 peptides reflecting neo-epitopes found in the majority of DIPG and DMG tumors. Newly diagnosed patients with DIPG and DMG who have completed radiation six to ten weeks prior to enrollment are eligible.

NCT ID: NCT04870944 Recruiting - Clinical trials for Refractory Malignant Solid Neoplasm

CBL0137 for the Treatment of Relapsed or Refractory Solid Tumors, Including CNS Tumors and Lymphoma

Start date: January 28, 2022
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial evaluates the best dose, side effects and possible benefit of CBL0137 in treating patients with solid tumors, including central nervous system (CNS) tumors or lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Drugs, such as CBL0137, block signals passed from one molecule to another inside a cell. Blocking these signals can affect many functions of the cell, including cell division and cell death, and may kill cancer cells.

NCT ID: NCT04837547 Recruiting - Neuroblastoma Clinical Trials

PEACH TRIAL- Precision Medicine and Adoptive Cellular Therapy

PEACH
Start date: September 20, 2021
Phase: Phase 1
Study type: Interventional

A Phase I open-label, multicenter study, to evaluate the safety, feasibility, and maximum tolerated dose (MTD) of treating children with newly diagnosed DIPG or recurrent neuroblastoma with molecular targeted therapy in combination with adoptive cell therapy (Total tumor mRNA-pulsed autologous Dendritic Cells (DCs) (TTRNA-DCs), Tumor-specific ex vivo expanded autologous lymphocyte transfer (TTRNA-xALT) and Autologous G-CSF mobilized Hematopoietic Stem Cells (HSCs)).

NCT ID: NCT04771897 Recruiting - Clinical trials for Diffuse Intrinsic Pontine Glioma

A Study of BXQ-350 in Children With Newly Diagnosed Diffuse Intrinsic Pontine Glioma (DIPG) or Diffuse Midline Glioma (DMG)

KONQUER
Start date: May 24, 2021
Phase: Phase 1
Study type: Interventional

This study will evaluate the safety of BXQ-350 and determine the maximum tolerated dose (MTD) in children with newly diagnosed DIPG or DMG. All patients will receive BXQ-350 by intravenous (IV) infusion and radiation therapy. The study is divided into two parts: Part 1 will enroll patients at increasing dose levels of BXQ-350 in order to determine the MTD. Part 2 will enroll patients requiring a biopsy in order to assess BXQ-350 concentrations in the biopsied tumor.

NCT ID: NCT04758533 Recruiting - Clinical trials for Diffuse Intrinsic Pontine Glioma

Clinical Trial to Assess the Safety and Efficacy of AloCELYVIR With Newly Diagnosed Diffuse Intrinsic Pontine Glioma (DIPG) in Combination With Radiotherapy or Medulloblastoma in Monotherapy

AloCELYVIR
Start date: April 19, 2021
Phase: Phase 1/Phase 2
Study type: Interventional

The aim of this study is to assess the safety and efficacy of AloCELYVIR, which consist in bone marrow-derived allogenic mesenchymal stem cells infected with an oncolytic Adenovirus, ICOVIR-5. It has recently been proven that this type of cells are able of transporting oncolytic substances to tumor targets that are difficult to reach, such as medulloblastomas and gliomas, youth cancers located in the cranial cavity that have a poor prognosis and a fatal outcome. In addition, to exerting an anti-tumor action, this virus has the ability to stimulate the immune response, making the therapy even more effective. Thus, the diffuse intrinsic pontine glioma and the medulloblastoma in relapse/progression have been chosen to study the potential of this new advanced therapy through a weekly infusion for 8 weeks.

NCT ID: NCT04749641 Recruiting - Clinical trials for Diffuse Intrinsic Pontine Glioma

Neoantigen Vaccine Therapy Against H3.3-K27M Diffuse Intrinsic Pontine Glioma

ENACTING
Start date: March 8, 2021
Phase: Phase 1
Study type: Interventional

Diffuse intrinsic pontine gliomas (DIPGs), which diffusely occupy the pons of brainstem, are the deadliest primary brain cancer in children. Biopsy for pathology plus radiotherapy remains the current standard-of-care treatment that is minimal effective. Thus, the median overall survival after diagnosis is just 10 months. Recent studies have identified a lysine 27-to-methionine (K27M) somatic mutation at histone H3 variant (H3.3), as a feature mutation in DIPGs. Several preclinical studies have already demonstrated H3.3-K27M as a promising target for immunotherapy. The researched vaccine is a cancer-treatment vaccine containing an H3.3-K27M targeted neoantigen peptide, that can be taken up by antigen-presenting cells (APCs). APCs can present the peptide with the major histocompatibility complex (MHC) molecules on cell surface, thereby activating neoantigen-specific T cells and triggering corresponding cytotoxic T cell immune responses to eliminate H3.3-K27M-expressing DIPG cells. The main goal of this study is investigating the safety and preliminary efficacy of the vaccine in treating newly-diagnosed DIPGs when the vaccine is administered in combination with the standard-of-care treatment.