Diabetic Retinopathy Clinical Trial
— E-CLAIROfficial title:
E-CLAIR: Efficiency and Cost-effectiveness of Artificial Intelligence Based Diabetic Retinopathy Screening in Flanders
NCT number | NCT05391659 |
Other study ID # | S64955 |
Secondary ID | |
Status | Recruiting |
Phase | N/A |
First received | |
Last updated | |
Start date | June 17, 2021 |
Est. completion date | December 1, 2022 |
To evaluate the efficiency and cost-effectiveness of an artificial intelligence based diabetic retinopathy screening program in Flanders
Status | Recruiting |
Enrollment | 1200 |
Est. completion date | December 1, 2022 |
Est. primary completion date | November 1, 2022 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Diagnosis of diabetes mellitus - Age > 18 years old - Patient is capable of giving informed consent - Fluent in written and oral Dutch, or interpreter present Exclusion Criteria: - - History of treatment for diabetic retinopathy or diabetic macular edema (laser or intravitreal injections) - Participant is contraindicated for imaging by fundus imaging systems used in the study |
Country | Name | City | State |
---|---|---|---|
Belgium | ZNA | Antwerp | |
Belgium | UZA | Antwerpen | |
Belgium | AZ sint Jan | Brugge | |
Belgium | AZ Turnhout | Turnhout |
Lead Sponsor | Collaborator |
---|---|
Universitaire Ziekenhuizen Leuven |
Belgium,
Abràmoff MD, Folk JC, Han DP, Walker JD, Williams DF, Russell SR, Massin P, Cochener B, Gain P, Tang L, Lamard M, Moga DC, Quellec G, Niemeijer M. Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol. 2013 Mar;131(3):351-7. doi: 10.1001/jamaophthalmol.2013.1743. — View Citation
Farley TF, Mandava N, Prall FR, Carsky C. Accuracy of primary care clinicians in screening for diabetic retinopathy using single-image retinal photography. Ann Fam Med. 2008 Sep-Oct;6(5):428-34. doi: 10.1370/afm.857. — View Citation
Harding SP, Broadbent DM, Neoh C, White MC, Vora J. Sensitivity and specificity of photography and direct ophthalmoscopy in screening for sight threatening eye disease: the Liverpool Diabetic Eye Study. BMJ. 1995 Oct 28;311(7013):1131-5. — View Citation
Heydon P, Egan C, Bolter L, Chambers R, Anderson J, Aldington S, Stratton IM, Scanlon PH, Webster L, Mann S, du Chemin A, Owen CG, Tufail A, Rudnicka AR. Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients. Br J Ophthalmol. 2021 May;105(5):723-728. doi: 10.1136/bjophthalmol-2020-316594. Epub 2020 Jun 30. — View Citation
Kapetanakis VV, Rudnicka AR, Liew G, Owen CG, Lee A, Louw V, Bolter L, Anderson J, Egan C, Salas-Vega S, Rudisill C, Taylor P, Tufail A. A study of whether automated Diabetic Retinopathy Image Assessment could replace manual grading steps in the English National Screening Programme. J Med Screen. 2015 Sep;22(3):112-8. doi: 10.1177/0969141315571953. Epub 2015 Mar 5. — View Citation
Kempen JH, O'Colmain BJ, Leske MC, Haffner SM, Klein R, Moss SE, Taylor HR, Hamman RF; Eye Diseases Prevalence Research Group. The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol. 2004 Apr;122(4):552-63. — View Citation
Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond). 2015 Sep 30;2:17. doi: 10.1186/s40662-015-0026-2. eCollection 2015. Review. — View Citation
Liew G, Michaelides M, Bunce C. A comparison of the causes of blindness certifications in England and Wales in working age adults (16-64 years), 1999-2000 with 2009-2010. BMJ Open. 2014 Feb 12;4(2):e004015. doi: 10.1136/bmjopen-2013-004015. — View Citation
Lin DY, Blumenkranz MS, Brothers RJ, Grosvenor DM. The sensitivity and specificity of single-field nonmydriatic monochromatic digital fundus photography with remote image interpretation for diabetic retinopathy screening: a comparison with ophthalmoscopy and standardized mydriatic color photography. Am J Ophthalmol. 2002 Aug;134(2):204-13. — View Citation
Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017 Jun;128:40-50. doi: 10.1016/j.diabres.2017.03.024. Epub 2017 Mar 31. — View Citation
Sayres R, Taly A, Rahimy E, Blumer K, Coz D, Hammel N, Krause J, Narayanaswamy A, Rastegar Z, Wu D, Xu S, Barb S, Joseph A, Shumski M, Smith J, Sood AB, Corrado GS, Peng L, Webster DR. Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading for Diabetic Retinopathy. Ophthalmology. 2019 Apr;126(4):552-564. doi: 10.1016/j.ophtha.2018.11.016. Epub 2018 Dec 13. — View Citation
Sussman EJ, Tsiaras WG, Soper KA. Diagnosis of diabetic eye disease. JAMA. 1982 Jun 18;247(23):3231-4. — View Citation
Tufail A, Kapetanakis VV, Salas-Vega S, Egan C, Rudisill C, Owen CG, Lee A, Louw V, Anderson J, Liew G, Bolter L, Bailey C, Sadda S, Taylor P, Rudnicka AR. An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost-effectiveness. Health Technol Assess. 2016 Dec;20(92):1-72. — View Citation
Tufail A, Rudisill C, Egan C, Kapetanakis VV, Salas-Vega S, Owen CG, Lee A, Louw V, Anderson J, Liew G, Bolter L, Srinivas S, Nittala M, Sadda S, Taylor P, Rudnicka AR. Automated Diabetic Retinopathy Image Assessment Software: Diagnostic Accuracy and Cost-Effectiveness Compared with Human Graders. Ophthalmology. 2017 Mar;124(3):343-351. doi: 10.1016/j.ophtha.2016.11.014. Epub 2016 Dec 23. — View Citation
Wolff J, Pauling J, Keck A, Baumbach J. The Economic Impact of Artificial Intelligence in Health Care: Systematic Review. J Med Internet Res. 2020 Feb 20;22(2):e16866. doi: 10.2196/16866. — View Citation
Xie Y, Nguyen QD, Hamzah H, Lim G, Bellemo V, Gunasekeran DV, Yip MYT, Qi Lee X, Hsu W, Li Lee M, Tan CS, Tym Wong H, Lamoureux EL, Tan GSW, Wong TY, Finkelstein EA, Ting DSW. Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study. Lancet Digit Health. 2020 May;2(5):e240-e249. doi: 10.1016/S2589-7500(20)30060-1. Epub 2020 Apr 23. — View Citation
* Note: There are 16 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | sensitivity | To evaluate the efficiency of the use of AI in screening for DRP: sensitivity | 6 months | |
Primary | specificity | To evaluate the efficiency of the use of AI in screening for DRP: specificity | 6 months | |
Primary | AUC | To evaluate the efficiency of the use of AI in screening for DRP: AUC | 6 months | |
Secondary | precision | performance of three DR screening workflows: precision | 6 months | |
Secondary | decision tree model | cost-effectiveness of three DR screening workflows: decision tree model | 6 months | |
Secondary | recall | performance of three DR screening workflows : recall | 6 months | |
Secondary | F1 score | performance of three DR screening workflows: F1 score | 6 months | |
Secondary | false positives and false negatives | performance of three DR screening workflows: false positives and false negatives | 6 months |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT03660371 -
ILM Peeling in PDR Patients Undergoing PPV for VH
|
N/A | |
Completed |
NCT03660384 -
Silicone Oil Versus Gas in PDR Patients Undergoing Vitrectomy
|
N/A | |
Completed |
NCT03660345 -
PPV With Internal Limiting Membrane Peeling for Treatment-Naïve DME
|
Phase 3 | |
Completed |
NCT04905459 -
ARDA Software for the Detection of mtmDR
|
||
Active, not recruiting |
NCT04271709 -
Manhattan Vision Screening and Follow-Up Study (NYC-SIGHT)
|
N/A | |
Recruiting |
NCT03713268 -
Intraoperative OCT Guidance of Intraocular Surgery II
|
||
Completed |
NCT05022615 -
Comparing 3 Imaging Systems
|
||
Completed |
NCT00385333 -
Metabolic Mapping to Measure Retinal Metabolism
|
Phase 2 | |
Recruiting |
NCT04101604 -
Biomarkers of Common Eye Diseases
|
||
Completed |
NCT03702374 -
Combined Antioxidant Therapy on Oxidative Stress, Mitochondrial Dysfunction Markers in Diabetic Retinopathy
|
Phase 3 | |
Completed |
NCT01908816 -
An Open-label Extended Clinical Protocol of Ranibizumab to Evaluate Safety and Efficacy in Rare VEGF Driven Ocular Diseases.
|
Phase 3 | |
Completed |
NCT04009980 -
Long-term Retinal Changes After Topical Citicoline Administration in Patients With Mild Signs of Diabetic Retinopathy in Type 1 Diabetes Mellitus.
|
N/A | |
Completed |
NCT02924311 -
Routine Clinical Practice for Use of Intravitreal Aflibercept Treatment in Patients With Diabetic Macular Edema
|
||
Not yet recruiting |
NCT06257082 -
Video-based Patient Education Intervention for Diabetic Eye Screening in Latinx Communities
|
N/A | |
Not yet recruiting |
NCT05452993 -
Screening for Diabetic Retinopathy in Pharmacies With Artificial Intelligence Enhanced Retinophotography
|
N/A | |
Withdrawn |
NCT02812030 -
Aflibercept for Retinopathy in the Real World
|
N/A | |
Completed |
NCT02391558 -
Clinical Evaluation of Noninvasive OCT Angiography Using a Zeiss OCT Prototype to Compare to Fluorescein Angiography
|
N/A | |
Active, not recruiting |
NCT02353923 -
OcuStem Nutritional Supplement in Diabetic Patients With Mild to Moderate Non-proliferative Retinopathy
|
N/A | |
Active, not recruiting |
NCT02330042 -
OCT Biomarkers for Diabetic Retinopathy
|
||
Completed |
NCT02390245 -
Philadelphia Telemedicine Glaucoma Detection and Follow-Up Study
|
N/A |