Dengue Clinical Trial
— IRDDENGUELAOfficial title:
Identification of Risk Determinants of Dengue Transmission Through Landscape Analysis in the Neighborhood "El Vergel", Tapachula, Chiapas
Verified date | March 2024 |
Source | Instituto Mexicano del Seguro Social |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Observational |
This retrospective observational study aims to determine the probability of the risk of dengue transmission through a model based on epidemiological, entomological, socioeconomic, demographic, and landscape variables in the El Vergel neighborhood in the municipality of Tapachula, Chiapas, Mexico. The main question it aims to answer is: 1. Is it possible to identify the risk determinants of dengue transmission by developing a probabilistic model based on the landscape analysis of epidemiological, entomological, sociodemographic, and landscape variables in an endemic urban area of the municipality of Tapachula, Chiapas, Mexico? Participants will be selected from a registry obtained from the Secretary of Health of cases of dengue fever, which will be contrasted with the entomological, socioeconomic, demographic, and landscape variables in the El Vergel neighborhood in Tapachula, Chiapas, Mexico. They will be not contacted or sampled for biologic testing in any shape or form, only the data already collected from the health services will be used.
Status | Completed |
Enrollment | 196 |
Est. completion date | January 30, 2024 |
Est. primary completion date | July 31, 2023 |
Accepts healthy volunteers | No |
Gender | All |
Age group | N/A and older |
Eligibility | Inclusion Criteria: - The epidemiological information of all suspected cases of dengue with the onset of symptoms in the period from June 2019 to May 2020 that have a record on the platform of the National System for Epidemiological Surveillance will be included. Exclusion Criteria: - Records that do not have sufficient information for their georeferencing will be excluded. |
Country | Name | City | State |
---|---|---|---|
Mexico | Hospital General de Zona No. 1 | Tapachula | Chiapas |
Lead Sponsor | Collaborator |
---|---|
Instituto Mexicano del Seguro Social | Centro de Investigación en Matemáticas A.C. (CIMAT), Instituto Nacional de Salud Publica, Mexico |
Mexico,
Abdullah NAMH, Dom NC, Salleh SA, Salim H, Precha N. The association between dengue case and climate: A systematic review and meta-analysis. One Health. 2022 Oct 31;15:100452. doi: 10.1016/j.onehlt.2022.100452. eCollection 2022 Dec. — View Citation
Arredondo-Jimenez JI, Valdez-Delgado KM. Aedes aegypti pupal/demographic surveys in southern Mexico: consistency and practicality. Ann Trop Med Parasitol. 2006 Apr;100 Suppl 1:S17-S32. doi: 10.1179/136485906X105480. — View Citation
Aswi A, Cramb SM, Moraga P, Mengersen K. Bayesian spatial and spatio-temporal approaches to modelling dengue fever: a systematic review. Epidemiol Infect. 2018 Oct 29;147:e33. doi: 10.1017/S0950268818002807. — View Citation
Avirutnan P, Matangkasombut P. Unmasking the role of mast cells in dengue. Elife. 2013 Apr 30;2:e00767. doi: 10.7554/eLife.00767. — View Citation
Bennett JE, Dolin R, Blaser MJ, editores. Mandell, Douglas, and Bennett's principles and practice of infectious diseases. Ninth edition. Philadelphia, PA: Elsevier; 2020. 1 p.
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI. The global distribution and burden of dengue. Nature. 2013 Apr 25;496(7446):504-7. doi: 10.1038/nature12060. Epub 2013 Apr 7. — View Citation
Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis. 2012;6(8):e1760. doi: 10.1371/journal.pntd.0001760. Epub 2012 Aug 7. — View Citation
Carrasco-Escobar G, Moreno M, Fornace K, Herrera-Varela M, Manrique E, Conn JE. The use of drones for mosquito surveillance and control. Parasit Vectors. 2022 Dec 16;15(1):473. doi: 10.1186/s13071-022-05580-5. — View Citation
Case E, Shragai T, Harrington L, Ren Y, Morreale S, Erickson D. Evaluation of Unmanned Aerial Vehicles and Neural Networks for Integrated Mosquito Management of Aedes albopictus (Diptera: Culicidae). J Med Entomol. 2020 Sep 7;57(5):1588-1595. doi: 10.1093/jme/tjaa078. — View Citation
Ferraguti M, Martinez-de la Puente J, Roiz D, Ruiz S, Soriguer R, Figuerola J. Effects of landscape anthropization on mosquito community composition and abundance. Sci Rep. 2016 Jul 4;6:29002. doi: 10.1038/srep29002. — View Citation
Gubler DJ. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev. 1998 Jul;11(3):480-96. doi: 10.1128/CMR.11.3.480. — View Citation
Guzman MG, Harris E. Dengue. Lancet. 2015 Jan 31;385(9966):453-65. doi: 10.1016/S0140-6736(14)60572-9. Epub 2014 Sep 14. — View Citation
Hossain, M.S.; Raihan, M.E.; Hossain, M.S.; Syeed, M.M.M.; Rashid, H.; Reza, M.S. Aedes Larva Detection Using Ensemble Learning to Prevent Dengue Endemic. BioMedInformatics 2022, 2, 405-423. https://doi.org/10.3390/biomedinformatics2030026
Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell. 2002 Mar 8;108(5):717-25. doi: 10.1016/s0092-8674(02)00660-8. — View Citation
Leandro AS, Ayala MJC, Lopes RD, Martins CA, Maciel-de-Freitas R, Villela DAM. Entomo-Virological Aedes aegypti Surveillance Applied for Prediction of Dengue Transmission: A Spatio-Temporal Modeling Study. Pathogens. 2022 Dec 20;12(1):4. doi: 10.3390/pathogens12010004. — View Citation
Lee GO, Vasco L, Marquez S, Zuniga-Moya JC, Van Engen A, Uruchima J, Ponce P, Cevallos W, Trueba G, Trostle J, Berrocal VJ, Morrison AC, Cevallos V, Mena C, Coloma J, Eisenberg JNS. A dengue outbreak in a rural community in Northern Coastal Ecuador: An analysis using unmanned aerial vehicle mapping. PLoS Negl Trop Dis. 2021 Sep 27;15(9):e0009679. doi: 10.1371/journal.pntd.0009679. eCollection 2021 Sep. — View Citation
Lorenz C, Castro MC, Trindade PMP, Nogueira ML, de Oliveira Lage M, Quintanilha JA, Parra MC, Dibo MR, Favaro EA, Guirado MM, Chiaravalloti-Neto F. Predicting Aedes aegypti infestation using landscape and thermal features. Sci Rep. 2020 Dec 10;10(1):21688. doi: 10.1038/s41598-020-78755-8. — View Citation
Mechan F, Bartonicek Z, Malone D, Lees RS. Unmanned aerial vehicles for surveillance and control of vectors of malaria and other vector-borne diseases. Malar J. 2023 Jan 20;22(1):23. doi: 10.1186/s12936-022-04414-0. — View Citation
Moloney JM, Skelly C, Weinstein P, Maguire M, Ritchie S. Domestic Aedes aegypti breeding site surveillance: limitations of remote sensing as a predictive surveillance tool. Am J Trop Med Hyg. 1998 Aug;59(2):261-4. doi: 10.4269/ajtmh.1998.59.261. — View Citation
Muñiz-Sánchez, V.; Valdez-Delgado, K.M.; Hernandez-Lopez, F.J.; Moo-Llanes, D.A.; González-Farías, G.; Danis-Lozano, R. Use of Unmanned Aerial Vehicles for Building a House Risk Index of Mosquito-Borne Viral Diseases. Machines 2022, 10, 1161. https://doi.org/10.3390/machines10121161
Orta-Pineda G, Abella-Medrano CA, Suzan G, Serrano-Villagrana A, Ojeda-Flores R. Effects of landscape anthropization on sylvatic mosquito assemblages in a rainforest in Chiapas, Mexico. Acta Trop. 2021 Apr;216:105849. doi: 10.1016/j.actatropica.2021.105849. Epub 2021 Jan 30. — View Citation
Pardo Martínez D, Ojeda Martínez B, Alonso Remedios A. Dinámica de la respuesta inmune en la infección por virus del dengue. MediSur. febrero de 2018;16:76-84.
Rahman MS, Pientong C, Zafar S, Ekalaksananan T, Paul RE, Haque U, Rocklov J, Overgaard HJ. Mapping the spatial distribution of the dengue vector Aedes aegypti and predicting its abundance in northeastern Thailand using machine-learning approach. One Health. 2021 Dec 4;13:100358. doi: 10.1016/j.onehlt.2021.100358. eCollection 2021 Dec. — View Citation
Reinhold JM, Lazzari CR, Lahondere C. Effects of the Environmental Temperature on Aedes aegypti and Aedes albopictus Mosquitoes: A Review. Insects. 2018 Nov 6;9(4):158. doi: 10.3390/insects9040158. — View Citation
Sallam MF, Fizer C, Pilant AN, Whung PY. Systematic Review: Land Cover, Meteorological, and Socioeconomic Determinants of Aedes Mosquito Habitat for Risk Mapping. Int J Environ Res Public Health. 2017 Oct 16;14(10):1230. doi: 10.3390/ijerph14101230. — View Citation
Scott TW, Morrison AC. Vector dynamics and transmission of dengue virus: implications for dengue surveillance and prevention strategies: vector dynamics and dengue prevention. Curr Top Microbiol Immunol. 2010;338:115-28. doi: 10.1007/978-3-642-02215-9_9. — View Citation
Silver JB. Mosquito ecology: field sampling methods. springer science & business media; 2007.
Stanton MC, Kalonde P, Zembere K, Hoek Spaans R, Jones CM. The application of drones for mosquito larval habitat identification in rural environments: a practical approach for malaria control? Malar J. 2021 May 31;20(1):244. doi: 10.1186/s12936-021-03759-2. — View Citation
Talavera JO, Rivas-Ruiz R, Bernal-Rosales LP. [Clinical research V. Sample size]. Rev Med Inst Mex Seguro Soc. 2011 Sep-Oct;49(5):517-22. Spanish. — View Citation
Tun-Lin W, Kay BH, Barnes A. Understanding productivity, a key to Aedes aegypti surveillance. Am J Trop Med Hyg. 1995 Dec;53(6):595-601. doi: 10.4269/ajtmh.1995.53.595. — View Citation
Valdez-Delgado KM, Moo-Llanes DA, Danis-Lozano R, Cisneros-Vazquez LA, Flores-Suarez AE, Ponce-Garcia G, Medina-De la Garza CE, Diaz-Gonzalez EE, Fernandez-Salas I. Field Effectiveness of Drones to Identify Potential Aedes aegypti Breeding Sites in Househ — View Citation
Valdez-Delgado KM. Aplicación del uso de drones a fina escala para la asociación de factores demográficos, socio-económicos y ambientales con la abundancia de mosquitos Aedes aegypti (Linnaeus) y Aedes albopictus (Skuse) Diptera: Culicidae, en áreas persi
World Health Organization. (2012). Global strategy for dengue prevention and control 2012-2020. World Health Organization. https://apps.who.int/iris/handle/10665/75303
Yin S, Ren C, Shi Y, Hua J, Yuan HY, Tian LW. A Systematic Review on Modeling Methods and Influential Factors for Mapping Dengue-Related Risk in Urban Settings. Int J Environ Res Public Health. 2022 Nov 18;19(22):15265. doi: 10.3390/ijerph192215265. — View Citation
* Note: There are 34 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Risk | A probabilistic risk model will be generated based on the variables of different natures used and maps will be built to identify the areas of greatest risk for dengue transmission in the study area | One year, six months previous to the survey application (November-December 2019) and six months after |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT05321264 -
Educational Intervention to Promote Control Behaviors and Prevention of Dengue
|
N/A | |
Completed |
NCT01436396 -
Study of Yellow Fever Vaccine Administered With Tetravalent Dengue Vaccine in Healthy Toddlers
|
Phase 3 | |
Completed |
NCT01391819 -
Study to Evaluate the Incidence, Clinical Characteristics and Economic Burden of Dengue in Brazilian Children
|
N/A | |
Completed |
NCT03641339 -
Defining Skin Immunity of a Bite of Key Insect Vectors in Humans
|
N/A | |
Completed |
NCT02833584 -
Safety of Paracetamol as Antipyretic in Treatment of Dengue Infection in Adults
|
N/A | |
Completed |
NCT02433652 -
Evaluating the Safety and Protective Efficacy of a Single Dose of a Trivalent Live Attenuated Dengue Vaccine to Protect Against Infection With DENV-2
|
Phase 1 | |
Enrolling by invitation |
NCT02016027 -
Pharmacological Effect of Carica Papaya Leaves Mother Tincture in Healthy Individuals Blood Parameter
|
Phase 1 | |
Completed |
NCT01477671 -
Prospective Dengue Seroprevalence Study in 5 to 10 Year-old Children
|
N/A | |
Recruiting |
NCT00377754 -
Prospective Study of Infant Dengue
|
N/A | |
Recruiting |
NCT05919277 -
A Dengue Sero-prevalence Study in the Metropolitan Area of Buenos Aires
|
||
Recruiting |
NCT04582474 -
Demonstration of an Electronic Clinical Decision Support Module for Dengue in Burkina Faso
|
N/A | |
Completed |
NCT01983553 -
Long-Term Study of Hospitalized Dengue & Safety in Thai Children Included in a Tetravalent Dengue Vaccine Efficacy Study
|
||
Completed |
NCT03803618 -
Dengue Effectiveness Study in the Philippines
|
||
Active, not recruiting |
NCT05967455 -
Homologous Re-infection With Dengue 1 or Dengue 3
|
Phase 1 | |
Completed |
NCT03631719 -
Impact of Wolbachia Deployment on Arboviral Disease Incidence in Medellin and Bello, Colombia
|
||
Recruiting |
NCT02606019 -
The Use of Biomarkers in Predicting Dengue Outcome
|
N/A | |
Completed |
NCT02372175 -
Assessment of a Dengue-1-Virus-Live Virus Human Challenge - (DENV-1-LVHC) Virus Strain
|
Phase 1 | |
Active, not recruiting |
NCT01696422 -
Phase II Trial to Evaluate Safety and Immunogenicity of a Dengue 1,2,3,4 (Attenuated) Vaccine
|
Phase 2 | |
Completed |
NCT00993447 -
Immunogenicity and Safety of Sanofi Pasteur's CYD Dengue Vaccine in Healthy Children and Adolescents in Latin America
|
Phase 2 | |
Completed |
NCT00375726 -
Safety of and Immune Response to a Dengue Virus Vaccine (rDEN3/4delta30[ME]) in Healthy Adults
|
Phase 1 |