Clinical Trials Logo

Clinical Trial Details — Status: Terminated

Administrative data

NCT number NCT03055585
Other study ID # UGM_KE/FK/105/EC
Secondary ID
Status Terminated
Phase N/A
First received
Last updated
Start date November 8, 2017
Est. completion date April 8, 2020

Study information

Verified date June 2020
Source Gadjah Mada University
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

This cluster randomised trial will evaluate the efficacy of Wolbachia-infected Aedes aegytpi mosquitoes in reducing dengue cases in Yogyakarta City, Indonesia


Description:

Primary objective:

To assess the efficacy of community-based deployments of Wolbachia-infected Aedes aegypti mosquitoes in reducing the incidence of symptomatic, virologically-confirmed dengue cases of any severity in Yogyakarta residents aged 3-45 years in release areas, relative to non-release areas.

Secondary objectives:

- To measure the efficacy of the Wolbachia method against each of the four DENV serotypes.

- To measure the efficacy of the Wolbachia method in reducing the incidence of symptomatic virologically confirmed Zika virus and chikungunya virus infection in release areas, relative to non-release areas

- To quantify the level of human mobility within Yogyakarta City, and estimate the proportion of residents' exposure time that they spend outside the treatment arm to which they were randomised

- To determine whether community-based deployment of Wolbachia-infected Ae. aegypti mosquitoes reduces the abundance of wild-type Ae. aegypti adults, or alternatively, alters the abundance of adults from Aedes species other than Ae. aegypti (e.g. Ae. albopictus)

Study setting:

The study will be conducted in Yogyakarta City and Bantul District, both located in the province of Yogyakarta Special Region, Indonesia.The study site is 26 km2 in size, including 24 km2 within Yogyakarta City, and 2km2 in the adjacent Bantul District. The total population of the study area is approximately 350,000.

Study design:

A cluster randomised trial with a test-negative design will be conducted. The study site will be divided into 24 clusters. The intervention will be allocated using constrained block randomisation with a parallel 1:1 assignment of intervention and control.

The intervention is the deployment of Wolbachia-infected Aedes aegypti mosquitoes. Wolbachia deployments will be conducted in intervention clusters with the aim of achieving Wolbachia establishment (>80% mean Wolbachia prevalence in trapped mosquitoes) throughout intervention areas within one year.

The impact of Wolbachia deployments on dengue incidence will be assessed by comparing the exposure distribution (probability of living in a Wolbachia-treated area) among virologically-confirmed dengue cases presenting to a network of public primary clinics (Puskesmas), against the exposure distribution among patients with febrile illness of non-arboviral aetiology presenting to the same network of clinics in the same temporal windows. Dengue cases and arbovirus-negative controls will be sampled concurrently from within the population of patients presenting with febrile illness to the study clinic network, with case or control status classified retrospectively based on the results of laboratory diagnostic testing.

A re-estimation of sample size requirements was conducted in January 2019 after one year of recruitment. The initial power calculation used 1000 dengue cases and 4000 non-dengue controls allocated to each cluster based on historical proportions of dengue cases and other febrile illnesses, assuming no variation in the proportion of cases by cluster. This method was found to overestimate power for small samples by not taking into account randomness in the sampling. The sample size re-estimation included power estimates for 200, 400, 600, 800 and 1000 dengue cases with 4 times as many controls allocated to each cluster by sampling from a multinomial distribution, which incorporated added randomness by allowing the proportion of cases allocated to each cluster to vary across simulations. The re-estimation found that 400 dengue cases plus four times as many controls would be sufficient to detect a 50% reduction in dengue incidence with 80% power.

Participant selection:

Participants will be enrolled from within the population of patients presenting with undifferentiated fever of 1-4 days duration, to one of the participating local health clinics (Puskesmas).

All patients meeting the inclusion criteria will be invited to participate in the study. From baseline historical data we expect approximately 5000 participants per annum to be enrolled.

Enrolment will continue for up to 36 months.

Analysis plan:

Permutation tests and standard regression models will be used to estimate the relative risk of dengue in Wolbachia-treated versus untreated clusters, accounting for the non-independence of study participants resident in the same intervention cluster, and temporal matching of dengue cases and test-negative controls.

The intention-to-treat analysis will consider Wolbachia exposure as binary depending on the allocation of the cluster of residence.

The per-protocol analysis will consider Wolbachia exposure as a continuous weighted index based on Wolbachia prevalence in trapped mosquitoes in the cluster of residence, either with or without weighting for time spent in other clusters visited during the ten days prior to illness onset.


Recruitment information / eligibility

Status Terminated
Enrollment 8173
Est. completion date April 8, 2020
Est. primary completion date March 18, 2020
Accepts healthy volunteers No
Gender All
Age group 3 Years to 45 Years
Eligibility Inclusion Criteria:

- Fever (either self-reported or objectively measured, e.g. (tympanic membrane temperature =38oC)) of 1-4 days duration, and where onset was prior to the day of presentation

- Aged between 3-45 years old

- Resided in the study area every night for the 10 days preceding illness onset

Exclusion Criteria:

- Localising features suggestive of a specific diagnosis other than an arboviral infection e.g. severe diarrhea, otitis, pneumonia

- Prior enrollment in the study within the previous 4 weeks

Study Design


Related Conditions & MeSH terms


Intervention

Biological:
Wolbachia-infected Aedes aegypti mosquitoes
Deployment of Wolbachia-infected Aedes aegypti mosquitoes
Other:
standard practice dengue control
standard practice dengue control activities conducted by dengue control program

Locations

Country Name City State
Indonesia Faculty of Medicine, Universitas Gadjah Mada Yogyakarta DIY

Sponsors (3)

Lead Sponsor Collaborator
Gadjah Mada University Monash University, The Tahija Foundation

Country where clinical trial is conducted

Indonesia, 

References & Publications (63)

Amuzu HE, Simmons CP, McGraw EA. Effect of repeat human blood feeding on Wolbachia density and dengue virus infection in Aedes aegypti. Parasit Vectors. 2015 Apr 24;8:246. doi: 10.1186/s13071-015-0853-y. — View Citation

Andersson N, Nava-Aguilera E, Arosteguí J, Morales-Perez A, Suazo-Laguna H, Legorreta-Soberanis J, Hernandez-Alvarez C, Fernandez-Salas I, Paredes-Solís S, Balmaseda A, Cortés-Guzmán AJ, Serrano de Los Santos R, Coloma J, Ledogar RJ, Harris E. Evidence based community mobilization for dengue prevention in Nicaragua and Mexico (Camino Verde, the Green Way): cluster randomized controlled trial. BMJ. 2015 Jul 8;351:h3267. doi: 10.1136/bmj.h3267. — View Citation

Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI. The global distribution and burden of dengue. Nature. 2013 Apr 25;496(7446):504-7. doi: 10.1038/nature12060. Epub 2013 Apr 7. — View Citation

Bowman LR, Donegan S, McCall PJ. Is Dengue Vector Control Deficient in Effectiveness or Evidence?: Systematic Review and Meta-analysis. PLoS Negl Trop Dis. 2016 Mar 17;10(3):e0004551. doi: 10.1371/journal.pntd.0004551. eCollection 2016 Mar. Review. — View Citation

Bowman LR, Runge-Ranzinger S, McCall PJ. Assessing the relationship between vector indices and dengue transmission: a systematic review of the evidence. PLoS Negl Trop Dis. 2014 May 8;8(5):e2848. doi: 10.1371/journal.pntd.0002848. eCollection 2014 May. Review. — View Citation

BPS - Statistics Indonesia. Badan Pusat Statistik. (2016). Available at: www.bps.go.id

Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis. 2012;6(8):e1760. doi: 10.1371/journal.pntd.0001760. Epub 2012 Aug 7. — View Citation

Capeding MR, Tran NH, Hadinegoro SR, Ismail HI, Chotpitayasunondh T, Chua MN, Luong CQ, Rusmil K, Wirawan DN, Nallusamy R, Pitisuttithum P, Thisyakorn U, Yoon IK, van der Vliet D, Langevin E, Laot T, Hutagalung Y, Frago C, Boaz M, Wartel TA, Tornieporth NG, Saville M, Bouckenooghe A; CYD14 Study Group. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet. 2014 Oct 11;384(9951):1358-65. doi: 10.1016/S0140-6736(14)61060-6. Epub 2014 Jul 10. — View Citation

De Serres G, Skowronski DM, Wu XW, Ambrose CS. The test-negative design: validity, accuracy and precision of vaccine efficacy estimates compared to the gold standard of randomised placebo-controlled clinical trials. Euro Surveill. 2013 Sep 12;18(37). pii: 20585. — View Citation

Degener CM, Eiras AE, Azara TM, Roque RA, Rösner S, Codeço CT, Nobre AA, Rocha ES, Kroon EG, Ohly JJ, Geier M. Evaluation of the effectiveness of mass trapping with BG-sentinel traps for dengue vector control: a cluster randomized controlled trial in Manaus, Brazil. J Med Entomol. 2014 Mar;51(2):408-20. — View Citation

Dengue Vaccine Initiative. Dengue vaccine candidates in clinical development. (2016). Available at: http://www.denguevaccines.org/vaccine-development. (Accessed: 13th June 2016)

Dutra HL, Rocha MN, Dias FB, Mansur SB, Caragata EP, Moreira LA. Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes. Cell Host Microbe. 2016 Jun 8;19(6):771-4. doi: 10.1016/j.chom.2016.04.021. Epub 2016 May 4. — View Citation

Endy TP, Yoon IK, Mammen MP. Prospective cohort studies of dengue viral transmission and severity of disease. Curr Top Microbiol Immunol. 2010;338:1-13. doi: 10.1007/978-3-642-02215-9_1. Review. — View Citation

Erlanger TE, Keiser J, Utzinger J. Effect of dengue vector control interventions on entomological parameters in developing countries: a systematic review and meta-analysis. Med Vet Entomol. 2008 Sep;22(3):203-21. doi: 10.1111/j.1365-2915.2008.00740.x. Review. — View Citation

Esu E, Lenhart A, Smith L, Horstick O. Effectiveness of peridomestic space spraying with insecticide on dengue transmission; systematic review. Trop Med Int Health. 2010 May;15(5):619-31. doi: 10.1111/j.1365-3156.2010.02489.x. Epub 2010 Mar 8. Review. — View Citation

Ferguson NM, Kien DT, Clapham H, Aguas R, Trung VT, Chau TN, Popovici J, Ryan PA, O'Neill SL, McGraw EA, Long VT, Dui le T, Nguyen HL, Chau NV, Wills B, Simmons CP. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci Transl Med. 2015 Mar 18;7(279):279ra37. doi: 10.1126/scitranslmed.3010370. — View Citation

Frentiu FD, Zakir T, Walker T, Popovici J, Pyke AT, van den Hurk A, McGraw EA, O'Neill SL. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl Trop Dis. 2014 Feb 20;8(2):e2688. doi: 10.1371/journal.pntd.0002688. eCollection 2014 Feb. — View Citation

Graham RR, Juffrie M, Tan R, Hayes CG, Laksono I, Ma'roef C, Erlin, Sutaryo, Porter KR, Halstead SB. A prospective seroepidemiologic study on dengue in children four to nine years of age in Yogyakarta, Indonesia I. studies in 1995-1996. Am J Trop Med Hyg. 1999 Sep;61(3):412-9. — View Citation

Greenland S, Thomas DC. On the need for the rare disease assumption in case-control studies. Am J Epidemiol. 1982 Sep;116(3):547-53. Erratum in: Am J Epidemiol 1990 Jun;131(6):1102. — View Citation

Guy B, Lang J, Saville M, Jackson N. Vaccination Against Dengue: Challenges and Current Developments. Annu Rev Med. 2016;67:387-404. doi: 10.1146/annurev-med-091014-090848. Epub 2015 Oct 23. Review. — View Citation

Haber M, An Q, Foppa IM, Shay DK, Ferdinands JM, Orenstein WA. A probability model for evaluating the bias and precision of influenza vaccine effectiveness estimates from case-control studies. Epidemiol Infect. 2015 May;143(7):1417-26. doi: 10.1017/S0950268814002179. Epub 2014 Aug 22. — View Citation

Haddow AD, Schuh AJ, Yasuda CY, Kasper MR, Heang V, Huy R, Guzman H, Tesh RB, Weaver SC. Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage. PLoS Negl Trop Dis. 2012;6(2):e1477. doi: 10.1371/journal.pntd.0001477. Epub 2012 Feb 28. — View Citation

Hadinegoro SR, Arredondo-García JL, Capeding MR, Deseda C, Chotpitayasunondh T, Dietze R, Muhammad Ismail HI, Reynales H, Limkittikul K, Rivera-Medina DM, Tran HN, Bouckenooghe A, Chansinghakul D, Cortés M, Fanouillere K, Forrat R, Frago C, Gailhardou S, Jackson N, Noriega F, Plennevaux E, Wartel TA, Zambrano B, Saville M; CYD-TDV Dengue Vaccine Working Group. Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease. N Engl J Med. 2015 Sep 24;373(13):1195-206. doi: 10.1056/NEJMoa1506223. Epub 2015 Jul 27. — View Citation

Haybittle JL. Repeated assessment of results in clinical trials of cancer treatment. Br J Radiol. 1971 Oct;44(526):793-7. — View Citation

Hayes, R. & Moulton, L. Cluster randomized trials. (Chapman & Hall/CRC, 2009)

Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH. How many species are infected with Wolbachia?--A statistical analysis of current data. FEMS Microbiol Lett. 2008 Apr;281(2):215-20. doi: 10.1111/j.1574-6968.2008.01110.x. Epub 2008 Feb 28. — View Citation

Ivers NM, Halperin IJ, Barnsley J, Grimshaw JM, Shah BR, Tu K, Upshur R, Zwarenstein M. Allocation techniques for balance at baseline in cluster randomized trials: a methodological review. Trials. 2012 Aug 1;13:120. doi: 10.1186/1745-6215-13-120. Review. — View Citation

Jackson ML, Nelson JC. The test-negative design for estimating influenza vaccine effectiveness. Vaccine. 2013 Apr 19;31(17):2165-8. doi: 10.1016/j.vaccine.2013.02.053. Epub 2013 Mar 13. — View Citation

Johnson KN. The Impact of Wolbachia on Virus Infection in Mosquitoes. Viruses. 2015 Nov 4;7(11):5705-17. doi: 10.3390/v7112903. Review. — View Citation

Joubert DA, Walker T, Carrington LB, De Bruyne JT, Kien DH, Hoang Nle T, Chau NV, Iturbe-Ormaetxe I, Simmons CP, O'Neill SL. Establishment of a Wolbachia Superinfection in Aedes aegypti Mosquitoes as a Potential Approach for Future Resistance Management. PLoS Pathog. 2016 Feb 18;12(2):e1005434. doi: 10.1371/journal.ppat.1005434. eCollection 2016 Feb. — View Citation

Karyanti MR, Uiterwaal CS, Kusriastuti R, Hadinegoro SR, Rovers MM, Heesterbeek H, Hoes AW, Bruijning-Verhagen P. The changing incidence of dengue haemorrhagic fever in Indonesia: a 45-year registry-based analysis. BMC Infect Dis. 2014 Jul 26;14:412. doi: 10.1186/1471-2334-14-412. — View Citation

Kosasih H, de Mast Q, Widjaja S, Sudjana P, Antonjaya U, Ma'roef C, Riswari SF, Porter KR, Burgess TH, Alisjahbana B, van der Ven A, Williams M. Evidence for endemic chikungunya virus infections in Bandung, Indonesia. PLoS Negl Trop Dis. 2013 Oct 24;7(10):e2483. doi: 10.1371/journal.pntd.0002483. eCollection 2013. — View Citation

Kwong JC, Druce JD, Leder K. Zika virus infection acquired during brief travel to Indonesia. Am J Trop Med Hyg. 2013 Sep;89(3):516-7. doi: 10.4269/ajtmh.13-0029. Epub 2013 Jul 22. — View Citation

L'Azou M, Moureau A, Sarti E, Nealon J, Zambrano B, Wartel TA, Villar L, Capeding MR, Ochiai RL; CYD14 Primary Study Group; CYD15 Primary Study Group. Symptomatic Dengue in Children in 10 Asian and Latin American Countries. N Engl J Med. 2016 Mar 24;374(12):1155-66. doi: 10.1056/NEJMoa1503877. — View Citation

Laras K, Sukri NC, Larasati RP, Bangs MJ, Kosim R, Djauzi, Wandra T, Master J, Kosasih H, Hartati S, Beckett C, Sedyaningsih ER, Beecham HJ 3rd, Corwin AL. Tracking the re-emergence of epidemic chikungunya virus in Indonesia. Trans R Soc Trop Med Hyg. 2005 Feb;99(2):128-41. — View Citation

Leung GH, Baird RW, Druce J, Anstey NM. ZIKA VIRUS INFECTION IN AUSTRALIA FOLLOWING A MONKEY BITE IN INDONESIA. Southeast Asian J Trop Med Public Health. 2015 May;46(3):460-4. — View Citation

McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, Wang YF, O'Neill SL. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science. 2009 Jan 2;323(5910):141-4. doi: 10.1126/science.1165326. — View Citation

Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O'Neill SL. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 2009 Dec 24;139(7):1268-78. doi: 10.1016/j.cell.2009.11.042. — View Citation

Mulyatno KC, Susilowati H, Yamanaka A, Soegijanto S, Konishi E. Primary isolation and phylogenetic studies of Chikungunya virus from Surabaya, Indonesia. Jpn J Infect Dis. 2012;65(1):92-4. — View Citation

O'Neill SL, Pettigrew MM, Sinkins SP, Braig HR, Andreadis TG, Tesh RB. In vitro cultivation of Wolbachia pipientis in an Aedes albopictus cell line. Insect Mol Biol. 1997 Feb;6(1):33-9. — View Citation

Perkasa A, Yudhaputri F, Haryanto S, Hayati RF, Ma'roef CN, Antonjaya U, Yohan B, Myint KS, Ledermann JP, Rosenberg R, Powers AM, Sasmono RT. Isolation of Zika Virus from Febrile Patient, Indonesia. Emerg Infect Dis. 2016 May;22(5):924-5. doi: 10.3201/eid2205.151915. — View Citation

Pilger, D., De Maesschalck, M., Horstick, O. & San Martín, J. L. Dengue outbreak response: documented effective interventions and evidence gaps. TropIKA 1, (2010)

Porter KR, Tan R, Istary Y, Suharyono W, Sutaryo, Widjaja S, Ma'Roef C, Listiyaningsih E, Kosasih H, Hueston L, McArdle J, Juffrie M. A serological study of Chikungunya virus transmission in Yogyakarta, Indonesia: evidence for the first outbreak since 1982. Southeast Asian J Trop Med Public Health. 2004 Jun;35(2):408-15. — View Citation

Rainey SM, Shah P, Kohl A, Dietrich I. Understanding the Wolbachia-mediated inhibition of arboviruses in mosquitoes: progress and challenges. J Gen Virol. 2014 Mar;95(Pt 3):517-530. doi: 10.1099/vir.0.057422-0. Epub 2013 Dec 16. Review. — View Citation

Ramadona AL, Lazuardi L, Hii YL, Holmner Å, Kusnanto H, Rocklöv J. Prediction of Dengue Outbreaks Based on Disease Surveillance and Meteorological Data. PLoS One. 2016 Mar 31;11(3):e0152688. doi: 10.1371/journal.pone.0152688. eCollection 2016. — View Citation

Riswari SF, Ma'roef CN, Djauhari H, Kosasih H, Perkasa A, Yudhaputri FA, Artika IM, Williams M, van der Ven A, Myint KS, Alisjahbana B, Ledermann JP, Powers AM, Jaya UA. Study of viremic profile in febrile specimens of chikungunya in Bandung, Indonesia. J Clin Virol. 2016 Jan;74:61-5. doi: 10.1016/j.jcv.2015.11.017. Epub 2015 Nov 17. — View Citation

Rolph MS, Foo SS, Mahalingam S. Emergent chikungunya virus and arthritis in the Americas. Lancet Infect Dis. 2015 Sep;15(9):1007-1008. doi: 10.1016/S1473-3099(15)00231-5. — View Citation

Rousset F, Vautrin D, Solignac M. Molecular identification of Wolbachia, the agent of cytoplasmic incompatibility in Drosophila simulans, and variability in relation with host mitochondrial types. Proc Biol Sci. 1992 Mar 23;247(1320):163-8. — View Citation

Schilte C, Staikowsky F, Couderc T, Madec Y, Carpentier F, Kassab S, Albert ML, Lecuit M, Michault A. Chikungunya virus-associated long-term arthralgia: a 36-month prospective longitudinal study. PLoS Negl Trop Dis. 2013;7(3):e2137. doi: 10.1371/journal.pntd.0002137. Epub 2013 Mar 21. Erratum in: PLoS Negl Trop Dis. 2013 Mar;7(3). doi:10.1371/annotation/850ee20f-2641-46ac-b0c6-ef4ae79b6de6. Staikovsky, Frédérik [corrected to Staikowsky, Frederik]. — View Citation

Shepard DS, Coudeville L, Halasa YA, Zambrano B, Dayan GH. Economic impact of dengue illness in the Americas. Am J Trop Med Hyg. 2011 Feb;84(2):200-7. doi: 10.4269/ajtmh.2011.10-0503. — View Citation

Shepard DS, Suaya JA, Halstead SB, Nathan MB, Gubler DJ, Mahoney RT, Wang DN, Meltzer MI. Cost-effectiveness of a pediatric dengue vaccine. Vaccine. 2004 Mar 12;22(9-10):1275-80. — View Citation

Shepard DS, Undurraga EA, Halasa YA. Economic and disease burden of dengue in Southeast Asia. PLoS Negl Trop Dis. 2013;7(2):e2055. doi: 10.1371/journal.pntd.0002055. Epub 2013 Feb 21. Review. — View Citation

Smith PG, Morrow RH, Ross DA, editors. Field Trials of Health Interventions: A Toolbox. 3rd edition. Oxford (UK): OUP Oxford; 2015 Jun 1. — View Citation

Stouthamer R, Breeuwer JA, Hurst GD. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol. 1999;53:71-102. Review. — View Citation

Vandenbroucke JP, Pearce N. Case-control studies: basic concepts. Int J Epidemiol. 2012 Oct;41(5):1480-9. doi: 10.1093/ije/dys147. — View Citation

Villar L, Dayan GH, Arredondo-García JL, Rivera DM, Cunha R, Deseda C, Reynales H, Costa MS, Morales-Ramírez JO, Carrasquilla G, Rey LC, Dietze R, Luz K, Rivas E, Miranda Montoya MC, Cortés Supelano M, Zambrano B, Langevin E, Boaz M, Tornieporth N, Saville M, Noriega F; CYD15 Study Group. Efficacy of a tetravalent dengue vaccine in children in Latin America. N Engl J Med. 2015 Jan 8;372(2):113-23. doi: 10.1056/NEJMoa1411037. Epub 2014 Nov 3. — View Citation

Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O'Neill SL, Hoffmann AA. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 2011 Aug 24;476(7361):450-3. doi: 10.1038/nature10355. — View Citation

Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, Shi PY, Vasilakis N. Zika virus: History, emergence, biology, and prospects for control. Antiviral Res. 2016 Jun;130:69-80. doi: 10.1016/j.antiviral.2016.03.010. Epub 2016 Mar 18. Review. — View Citation

Wilson AL, Boelaert M, Kleinschmidt I, Pinder M, Scott TW, Tusting LS, Lindsay SW. Evidence-based vector control? Improving the quality of vector control trials. Trends Parasitol. 2015 Aug;31(8):380-90. doi: 10.1016/j.pt.2015.04.015. Epub 2015 May 19. Review. — View Citation

Wolbers M, Kleinschmidt I, Simmons CP, Donnelly CA. Considerations in the design of clinical trials to test novel entomological approaches to dengue control. PLoS Negl Trop Dis. 2012;6(11):e1937. doi: 10.1371/journal.pntd.0001937. Epub 2012 Nov 29. — View Citation

World Health Organization. Mosquito (vector) control emergency response and preparedness for Zika virus. (2016). Available at: http://www.who.int/neglected_diseases/news/mosquito_vector_control_response/en/. (Accessed: 18th March 2016)

World Health Organization. Outcome of the Emergency Committee regarding clusters of microcephaly and Guillain-Barre syndrome. (2016)

Ye YH, Carrasco AM, Frentiu FD, Chenoweth SF, Beebe NW, van den Hurk AF, Simmons CP, O'Neill SL, McGraw EA. Wolbachia Reduces the Transmission Potential of Dengue-Infected Aedes aegypti. PLoS Negl Trop Dis. 2015 Jun 26;9(6):e0003894. doi: 10.1371/journal.pntd.0003894. eCollection 2015. — View Citation

* Note: There are 63 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Relative risk of dengue in Wolbachia-treated versus untreated clusters Symptomatic, virologically-confirmed dengue virus (DENV) infection of any severity Up to 36 months participant enrolment
Secondary Relative risk of serotype-specific dengue in Wolbachia-treated versus untreated clusters Symptomatic, virologically-confirmed serotype-specific DENV infection of any severity. Up to 36 months participant enrolment
Secondary Relative risk of Zika in Wolbachia-treated versus untreated clusters Symptomatic, virologically-confirmed Zika virus (ZIKV) infection of any severity. Up to 36 months participant enrolment
Secondary Relative risk of Chikungunya in Wolbachia-treated versus untreated clusters Symptomatic, virologically-confirmed Chikungunya virus (CHIKV) infection of any severity. Up to 36 months participant enrolment
See also
  Status Clinical Trial Phase
Completed NCT05321264 - Educational Intervention to Promote Control Behaviors and Prevention of Dengue N/A
Completed NCT01436396 - Study of Yellow Fever Vaccine Administered With Tetravalent Dengue Vaccine in Healthy Toddlers Phase 3
Completed NCT01391819 - Study to Evaluate the Incidence, Clinical Characteristics and Economic Burden of Dengue in Brazilian Children N/A
Completed NCT03641339 - Defining Skin Immunity of a Bite of Key Insect Vectors in Humans N/A
Completed NCT02833584 - Safety of Paracetamol as Antipyretic in Treatment of Dengue Infection in Adults N/A
Completed NCT02433652 - Evaluating the Safety and Protective Efficacy of a Single Dose of a Trivalent Live Attenuated Dengue Vaccine to Protect Against Infection With DENV-2 Phase 1
Enrolling by invitation NCT02016027 - Pharmacological Effect of Carica Papaya Leaves Mother Tincture in Healthy Individuals Blood Parameter Phase 1
Completed NCT01477671 - Prospective Dengue Seroprevalence Study in 5 to 10 Year-old Children N/A
Recruiting NCT00377754 - Prospective Study of Infant Dengue N/A
Recruiting NCT05919277 - A Dengue Sero-prevalence Study in the Metropolitan Area of Buenos Aires
Recruiting NCT04582474 - Demonstration of an Electronic Clinical Decision Support Module for Dengue in Burkina Faso N/A
Completed NCT01983553 - Long-Term Study of Hospitalized Dengue & Safety in Thai Children Included in a Tetravalent Dengue Vaccine Efficacy Study
Completed NCT03803618 - Dengue Effectiveness Study in the Philippines
Active, not recruiting NCT05967455 - Homologous Re-infection With Dengue 1 or Dengue 3 Phase 1
Completed NCT03631719 - Impact of Wolbachia Deployment on Arboviral Disease Incidence in Medellin and Bello, Colombia
Recruiting NCT02606019 - The Use of Biomarkers in Predicting Dengue Outcome N/A
Completed NCT02372175 - Assessment of a Dengue-1-Virus-Live Virus Human Challenge - (DENV-1-LVHC) Virus Strain Phase 1
Active, not recruiting NCT01696422 - Phase II Trial to Evaluate Safety and Immunogenicity of a Dengue 1,2,3,4 (Attenuated) Vaccine Phase 2
Completed NCT00993447 - Immunogenicity and Safety of Sanofi Pasteur's CYD Dengue Vaccine in Healthy Children and Adolescents in Latin America Phase 2
Completed NCT00375726 - Safety of and Immune Response to a Dengue Virus Vaccine (rDEN3/4delta30[ME]) in Healthy Adults Phase 1