Clinical Trials Logo

Delayed Sleep Phase Syndrome clinical trials

View clinical trials related to Delayed Sleep Phase Syndrome.

Filter by:
  • Recruiting  
  • Page 1

NCT ID: NCT05463861 Recruiting - Clinical trials for Delayed Sleep Phase Syndrome

Lemborexant in Delayed Sleep Phase Syndrome

Start date: February 1, 2022
Phase: Phase 4
Study type: Interventional

The purpose of the study is to evaluate whether Lemborexant is more effective than placebo in shortening sleep onset latency in patients with delayed sleep phase syndrome (both type 1 and type 2). This will be tracked using sleep logs as well as actigraphy. In this 2-year study, we will examine if Lemborexant administered 5-10 mg nightly taken at desired bedtime (at least 2 hours prior to self-reported sleep onset habitual time) can improve the symptoms of Delayed Sleep Phase Syndrome.

NCT ID: NCT04792697 Recruiting - Clinical trials for Delayed Sleep Phase Syndrome

Experimental Manipulation of Sleep and Circadian Rhythms and the Role Played on Reward Function in Teens

CARRS-P2
Start date: May 1, 2021
Phase: N/A
Study type: Interventional

Adolescence is a time of heightened reward sensitivity and greater impulsivity. On top of this, many teenagers experience chronic sleep deprivation and misalignment of their circadian rhythms due to biological shifts in their sleep/wake patterns paired with early school start times. Many studies find that this increases the risk for substance use (SU). However, what impact circadian rhythm and sleep disruption either together or independently have on the neuronal circuitry that controls reward and cognition, or if there are interventions that might help to modify these disruptions is unknown. Project 2 (P2) of the CARRS center will test an innovative and mechanistic model of brain circuitry that uses multi-method approaches, takes a developmental perspective, and incorporates key sleep and reward constructs.

NCT ID: NCT04690504 Recruiting - Sleep Disorder Clinical Trials

Validation of Circadian Biomarkers in Patients With Sleep Disorders

Start date: November 2, 2021
Phase:
Study type: Observational

Current methods for assessing circadian timing require sampling over hours (or even up to a day) while the patient is in controlled conditions. The investigators aim to develop a method that can estimate individual circadian time with a single blood sample taken at any time of the day or night. To do this, the investigators will use two state of the art methods, a plasma proteomics-based method to identify a panel of rhythmic proteins (extending our preliminary data) and a whole blood-derived monocyte-based method using a panel of 15 transcripts (to validate and extend a recent study). We will test both methods in a series of patients with circadian rhythm sleep disorders. We will validate separately the proteomics-based biomarker and the monocyte-based transcript biomarker, and also explore whether combining them can improve the accuracy of our timing estimates. In all cases, circadian phase estimates from the biomarker panels will be compared with those derived from plasma or saliva melatonin (the current "gold-standard" circadian phase marker).

NCT ID: NCT03956745 Recruiting - Clinical trials for Sleep Disorders, Circadian Rhythm

Biomarkers for Circadian Timing in Healthy Adults

Start date: June 1, 2021
Phase:
Study type: Observational

Study investigators want to learn more about the underlying biological clock and to see if the timing of that clock can be estimated from a single blood sample.

NCT ID: NCT00282061 Recruiting - Clinical trials for Delayed Sleep Phase Syndrome

Synchronization and Desynchronization Between Circadian Rhythms in Patients With Delayed Sleep Phase Syndrome (DSPS)

Start date: n/a
Phase: Phase 1
Study type: Interventional

This study's first aim is to widen the knowledge of the characteristics of delayed sleep phase disorder (DSPS) by focusing on the circadian rhythms of appetite regulation factors and their phase relations to the cycles of sleep-wake, melatonin, cortisol and body temperature. This study's second aim is to assess the influence of forced morning awakening, as a daily struggle faced by DSPS patients, upon the synchronization of these variables in DSPS patients. The investigators hypothesize that the chronic incompatibility between the endogenous sleep-wake rhythm of the DSPS patients and the morning wakefulness, as a social demand, may impair the synchronization between the different rhythms, as findings indicate in normal subjects under jet lag. And finally, the third aim of the study is to assess the influence of successful treatment with melatonin upon the phase locations of circadian rhythms of studied measures and the synchronization between them. These measures will be assessed in a controlled study, for 36 hours (sampled every 2 hours) under three distinct experimental conditions: first, under free sleep-wake conditions (ad-libitum bedtime and arousal); second, under restricted sleep-wake conditions (enforced morning wake-up); and finally, after 12 weeks of melatonin treatment.