Clinical Trials Logo

Clinical Trial Summary

Peripheral pulse oximetry allows continuous non-invasive measurement of arterial oxygen saturation, but the gold standard for arterial oxygen saturation is co-oximeter which requires an arterial blood sample. The purpose of this research study is to determine the accuracy of a pulse oximeter with a standard sensor (Masimo LNCS sensor) versus with the study sensors, namely Masimo blue sensor and Nellcor Max-I sensors and compared against co-oximetry. Currently available peripheral oximeters (standard) are inaccurate at low oxygen saturation noted in children with cyanotic heart disease. Hence therapeutic interventions (including surgery and cardiac catheterizations) based solely on peripheral oximetry can be delayed and or inadequate. By doing this study the investigators will be able to establish correct limits of peripheral pulse oximeter when using the standard and the study sensors.


Clinical Trial Description

Peripheral pulse oximetry allows continuous non-invasive measurement of arterial oxygen saturation, but the gold standard for arterial oxygen saturation is co-oximeter which requires an arterial blood sample. The purpose of this research study is to determine the accuracy of a pulse oximeter with a standard sensor (Masimo LNCS sensor) versus with the study sensors, namely Masimo blue sensor and Nellcor Max-I sensors and compared against co-oximetry. Currently available peripheral oximeters (standard) are inaccurate at low oxygen saturation noted in children with cyanotic heart disease. Hence therapeutic interventions (including surgery and cardiac catheterizations) based solely on peripheral oximetry can be delayed and or inadequate. By doing this study we will be able to establish correct limits of peripheral pulse oximeter when using the standard and the study sensors.

The investigator hopes to learn the limits of accuracy of currently available and used pulse oximeters. In children with cyanotic heart disease the "blue sensor" has been found in small studies to be more accurate compared to the "standard" pulse oximeter.

This study is important as it will provide information as to which pulse oximeter should be routinely used in children with cyanotic heart disease and to assess which SPO2 even with blue sensor is borderline and therefore the physician will know to obtain arterial blood sample for co-oximeter prior to planning important procedures based on a saturation reading. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02237014
Study type Observational
Source Stanford University
Contact
Status Completed
Phase N/A
Start date November 2012
Completion date December 2014

See also
  Status Clinical Trial Phase
Completed NCT03255564 - Monitor Faecal Calprotectin Concentration in Infants With Heart Defects
Not yet recruiting NCT06373939 - Performance and Safety of the Pneumoscope Device in Adults and Children N/A
Recruiting NCT05927233 - Effect of Methylprednisolone on Systemic Inflammatory Response During Pediatric Congenital Open-Heart Surgery Phase 4