Critically Ill Clinical Trial
Official title:
Testing of a New Therapeutic Vibration Device to Reduce Neuromuscular Weakness in Hospitalized Patients
Verified date | May 2024 |
Source | University of Michigan |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Objective: Test the ability of vibration to produce physiologic, biochemical, and anatomic changes consistent with exercise that would help prevent the development of muscle weakness that occurs when patients are immobile for long periods of time.
Status | Completed |
Enrollment | 36 |
Est. completion date | March 22, 2019 |
Est. primary completion date | March 22, 2019 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years and older |
Eligibility | Exclusion Criteria: 1. Known pregnancy 2. Prisoner |
Country | Name | City | State |
---|---|---|---|
United States | University of Michigan | Ann Arbor | Michigan |
Lead Sponsor | Collaborator |
---|---|
University of Michigan |
United States,
Saxena H, Ward KR, Krishnan C, Epureanu BI. Effect of Multi-Frequency Whole-Body Vibration on Muscle Activation, Metabolic Cost and Regional Tissue Oxygenation. IEEE Access. 2020;8:140445-140455. doi: 10.1109/access.2020.3011691. Epub 2020 Jul 24. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Change in Regional Hemoglobin Oxygen Saturation | Change in tissue regional hemoglobin oxygen saturation (rSO2) using near infrared spectroscopy of the thighs,calf, and biceps Baseline measurements were taken for 1 minute and vibration period was for 10 minutes.
The mean value of rSO2 for 1 minute preceding vibration was computed as the baseline value. For the data collected during vibration, a moving average peak analysis for every 1 minute for 10 minutes of rSO2 data was carried out. The maximum value of the moving average was selected as the mean value of vibration. The moving average peak analysis was independently conducted for all three measurements from GL, RF and BB. |
10 minutes | |
Primary | VO2 and VCO2 | Oxygen consumption using a VO2 monitor and mask For the baseline data, a mean of 3 minutes of the segment preceding vibration was computed. For the data collected during vibration, a moving average peak analysis for every 3 minutes for 10 minutes of VO2, VCO2 data was carried out. The maximum value of the moving average was selected as the mean value. This methodology of segment extraction precluded the possibility of picking up short transient changes in metabolic data and helped ensure selection of steady set of values of metabolic variables which estimated the true response of the participant. | baseline and during device use (10 minutes) | |
Primary | Energy Expenditure | For the baseline data, a mean of 3 minutes of the segment preceding vibration was computed. For the data collected during vibration, a moving average peak analysis for every 3 minutes for 10 minutes of EE data was carried out. The maximum value of the moving average was selected as the mean value. This methodology of segment extraction precluded the possibility of picking up short transient changes in metabolic data and helped ensure selection of steady set of values of metabolic variables which estimated the true response of the participant. | 10 minutes | |
Primary | Minute Variation | For the baseline data, a mean of 3 minutes of the segment preceding vibration was computed. For the data collected during vibration, a moving average peak analysis for every 3 minutes for 10 minutes of data was carried out. The maximum value of the moving average was selected as the mean value. This methodology of segment extraction precluded the possibility of picking up short transient changes in metabolic data and helped ensure selection of steady set of values of metabolic variables which estimated the true response of the participant. | 10 minutes | |
Primary | Tidal Volume | For the baseline data, a mean of 3 minutes of the segment preceding vibration was computed. For the data collected during vibration, a moving average peak analysis for every 3 minutes for 10 minutes of data was carried out. The maximum value of the moving average was selected as the mean value. This methodology of segment extraction precluded the possibility of picking up short transient changes in metabolic data and helped ensure selection of steady set of values of metabolic variables which estimated the true response of the participant. | 10 minutes | |
Primary | EMG | Simultaneous multi-frequency synchronous excitation was the stimulus, using 15 Hz at shoulders and 25 Hz at feet. Baseline EMG data were recorded prior to commencement of vibration; a 1 second segment was extracted for post processing. For computing muscle activation during vibration, a 10 second EMG segment was extracted after 1 minute of start of the vibration. Extracted signals were filtered to remove artifacts; similar filtering procedures were carried out for EMG signals recorded during MVIC tests and baseline recording. The root-mean square values of EMG signals of vibration and MVIC were calculated. Normalization to MVIC followed (Vibration EMGRMS)/(MVIC EMGRMS) × 100. Bias calculated using (Filtered EMGRMS @ baseline)/(Unfiltered EMGRMS @ baseline); bias-corrected EMG during vibration computed using (Vibration EMGRMS /Bias). Therefore each muscle site has only 1 reported value, representative of the combined effect of multi-frequency excitation provided at shoulders and feet. | baseline and during intervention (not exceeding 1 minute) |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05539521 -
Efficacy and Safety of Remimazolam Besylate Versus Propofol for Sedation in Critically Ill Patients With Deep Sedation
|
Phase 2 | |
Recruiting |
NCT04776486 -
Iohexol Clearance in Critically Ill Patients With Augmented Renal Creatinine Clearance
|
N/A | |
Completed |
NCT05766319 -
The ICU-recover Box, Using Smart Technology for Monitoring Health Status After ICU Admission
|
N/A | |
Recruiting |
NCT03231540 -
The PREServation of MUScle Function in Critically Ill Patients (PRESMUS)
|
N/A | |
Completed |
NCT02286869 -
Cardioventilatory Coupling in Critically Ill Patients
|
N/A | |
Completed |
NCT01434823 -
24 Hour Intensivist Coverage in the Medical Intensive Care Unit
|
N/A | |
Active, not recruiting |
NCT01142570 -
Effect of Enteral Nutrition Enriched in Protein and Based on Indirect Calorimetry Measurement in Chronically Critically Ill Patients
|
N/A | |
Completed |
NCT01167595 -
Enhanced Protein-Energy Provision Via the Enteral Route in Critically Ill Patients
|
N/A | |
Completed |
NCT01293708 -
Realities, Expectations and Attitudes to Life Support Technologies in Intensive Care for Octogenarians:
|
||
Not yet recruiting |
NCT00916591 -
Prokinetic Drugs and Enteral Nutrition
|
N/A | |
Recruiting |
NCT00654797 -
Improving Blood Glucose Control With a Computerized Decision Support Tool: Phase 2
|
Phase 2 | |
Withdrawn |
NCT00178321 -
Improving Sleep in the Pediatric Intensive Care Unit
|
N/A | |
Completed |
NCT01168128 -
PERFormance Enhancement of the Canadian Nutrition Guidelines by a Tailored Implementation Strategy: The PERFECTIS Study
|
N/A | |
Completed |
NCT02447692 -
Proportional Assist Ventilation for Minimizing the Duration of Mechanical Ventilation: The PROMIZING Study
|
N/A | |
Recruiting |
NCT04582760 -
Early Mobilization in Ventilated sEpsis & Acute Respiratory Failure Study
|
N/A | |
Not yet recruiting |
NCT05961631 -
Bio-electrical Impedance Analysis Derived Parameters for Evaluating Fluid Accumulation
|
||
Completed |
NCT03276650 -
Admission of Adult-onset Still Disease Patients in the ICU
|
||
Completed |
NCT03922113 -
Muscle Function After Intensive Care
|
||
Recruiting |
NCT05055830 -
Opportunistic PK/PD Trial in Critically Ill Children (OPTIC)
|
||
Recruiting |
NCT06027008 -
Mechanical Insufflation-Exsufflation (Cough Assist) in Critically Ill Adults
|
N/A |