Critical Illness Clinical Trial
— Al-MDSOfficial title:
Development of a Multi-Disease Screening System for Emergency CT Imaging Based on Artificial Intelligence
Introduction: Early and rapid diagnosis of etiology is often an important part of saving the lives of patients in emergency department. Chest CT is an important examination method for emergency diagnosis because of its fast examination speed and accurate localization. Traditional medical imaging diagnosis relies on radiologists to report in a qualitative and subjective manner. Through the interdisciplinary combination of clinical, imaging and artificial intelligence, the integration of multi-omics data, the construction of large-scale language models, and the construction of the auxiliary diagnosis support system of "one check for multiple diseases" provide new ideas and means for the rapid and accurate screening of emergency critical diseases. Method: Study design Investigators retrospectively collected cardiovascular, respiratory, digestive, and neurological CT images, demographic data, medical history and laboratory date of emergency department patients during the period from 1 January 2018 and 30 December 2024. Regularly carry out standardized follow-up work, and complete the collection and database establishment of clinical-imaging multi-omics data of patients attending emergency department.The inclusion criteria are:1. adult emergency patients with cardiovascular, respiratory, digestive, and nervous system diseases; 2. These patients had CT images. Patients with incomplete clinical or radiographic data were excluded from the analysis. Regularly carry out standardized follow-up work, and complete the collection and database establishment of clinical-imaging multi-omics data of patients attending emergency department. Based on the collected medical text data, an artificial intelligence large-scale language model algorithm framework is built. After the structure annotation of chest CT images is performed by doctors above the intermediate level of imaging, the Transformer deep neural network is trained for CT image segmentation, and a series of tasks such as structural structure segmentation, damage detection, disease classification and automatic report generation are developed based on Vision Transformer self-attention architecture mechanism. A multi-disease diagnosis and treatment decision-making system based on chest CT images, clinical text and examination multimodal data was constructed and validated. Disscusion Emergency medicine deals mainly with unpredictable critical and sudden illnesses. Patients who come to the emergency department for medical treatment often have acute onset, hidden condition, rapid progress, many complications, high mortality and disability rate. Assisted diagnosis systems developed by combining clinical text, images and artificial intelligence can greatly improve the ability of emergency department doctors to accurately diagnose diseases. This study fills the blank of CT artificial intelligence aided diagnosis system for emergency patients, and provides a rapid diagnosis scheme for multi-system and multi-disease. Finally, the results will be transformed into clinical application software and used and promoted in clinical work to improve the diagnosis and treatment level.
Status | Not yet recruiting |
Enrollment | 10000 |
Est. completion date | July 31, 2025 |
Est. primary completion date | July 31, 2024 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years to 100 Years |
Eligibility | Inclusion Criteria: Adults with cardiovascular, respiratory, digestive, and neurological disorders. CT imaging was available. Exclusion Criteria: Patients with incomplete clinical or radiographic data were excluded. |
Country | Name | City | State |
---|---|---|---|
China | Sun Yat-sen Memorial Hospital, Sun Yat-sen University | Guangzhou |
Lead Sponsor | Collaborator |
---|---|
Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University |
China,
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Accuracy of disease diagnosis | Construct a rapid diagnosis, accurate and efficient emergency CT image multi-disease rapid joint screening system | 2025-08-01~2025-12-31 |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04551508 -
Delirium Screening 3 Methods Study
|
||
Recruiting |
NCT06037928 -
Plasma Sodium and Sodium Administration in the ICU
|
||
Completed |
NCT03671447 -
Enhanced Recovery After Intensive Care (ERIC)
|
N/A | |
Recruiting |
NCT03941002 -
Continuous Evaluation of Diaphragm Function
|
N/A | |
Recruiting |
NCT04674657 -
Does Extra-Corporeal Membrane Oxygenation Alter Antiinfectives Therapy Pharmacokinetics in Critically Ill Patients
|
||
Completed |
NCT04239209 -
Effect of Intensivist Communication on Surrogate Prognosis Interpretation
|
N/A | |
Completed |
NCT05531305 -
Longitudinal Changes in Muscle Mass After Intensive Care
|
N/A | |
Terminated |
NCT03335124 -
The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock
|
Phase 4 | |
Completed |
NCT02916004 -
The Use of Nociception Flexion Reflex and Pupillary Dilatation Reflex in ICU Patients.
|
N/A | |
Recruiting |
NCT05883137 -
High-flow Nasal Oxygenation for Apnoeic Oxygenation During Intubation of the Critically Ill
|
||
Completed |
NCT04479254 -
The Impact of IC-Guided Feeding Protocol on Clinical Outcomes in Critically Ill Patients (The IC-Study)
|
N/A | |
Recruiting |
NCT04475666 -
Replacing Protein Via Enteral Nutrition in Critically Ill Patients
|
N/A | |
Not yet recruiting |
NCT04516395 -
Optimizing Antibiotic Dosing Regimens for the Treatment of Infection Caused by Carbapenem Resistant Enterobacteriaceae
|
N/A | |
Not yet recruiting |
NCT04538469 -
Absent Visitors: The Wider Implications of COVID-19 on Non-COVID Cardiothoracic ICU Patients, Relatives and Staff
|
||
Withdrawn |
NCT04043091 -
Coronary Angiography in Critically Ill Patients With Type II Myocardial Infarction
|
N/A | |
Recruiting |
NCT02989051 -
Fluid Restriction Keeps Children Dry
|
Phase 2/Phase 3 | |
Recruiting |
NCT02922998 -
CD64 and Antibiotics in Human Sepsis
|
N/A | |
Completed |
NCT03048487 -
Protein Consumption in Critically Ill Patients
|
||
Completed |
NCT02899208 -
Can an Actigraph be Used to Predict Physical Function in Intensive Care Patients?
|
N/A | |
Recruiting |
NCT02163109 -
Oxygen Consumption in Critical Illness
|