Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT05497505
Other study ID # 2021.0528
Secondary ID
Status Recruiting
Phase
First received
Last updated
Start date March 10, 2022
Est. completion date June 2023

Study information

Verified date August 2022
Source Amsterdam UMC, location VUmc
Contact Patrick J Thoral, MD
Phone +31 20 444 3924
Email p.thoral@amsterdamumc.nl
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Unexpected intensive care unit (ICU) readmission is associated with longer length of stay and increased mortality. Bedside decision support may prevent readmission and mortality and may allow optimizing ICU capacity. Using a recently developed and prospectively validated machine learning model that predicts ICU readmission and mortality rate after ICU discharge and shows trends in these predictions over time, we will evaluate the implementation of the European conformity (CE)-marked software based on this model (Pacmed Critical, Pacmed, Amsterdam) by investigating whether the software improves diagnostic accuracy compared to routine clinical evaluation by the treatment team and whether availability of the information from this software leads to changes in discharge management (either postponing or advancing discharge) for patients considered eligible for discharge.


Description:

Rationale: Unexpected intensive care unit (ICU) readmission is associated with longer length of stay and increased mortality. Bedside decision support may prevent readmission and mortality and may allow optimizing ICU capacity. Several attempts to develop prediction models to prevent ICU readmission and/or death after discharge from the ICU for general adult critical care patients have been made previously. Although the performance of Machine Learning models versus physicians has been studied for diagnosing in medical imaging, there is scarce literature prospectively comparing physician's predictive performance when it comes to patient outcomes. In addition, currently, no readmission model is widely implemented nor tested to support ICU discharge Aim: Using a recently developed and prospectively validated machine learning model that predicts ICU readmission and mortality rate after ICU discharge and shows trends in these predictions over time, we will evaluate the implementation of the European conformity (CE)-marked software based on this model (Pacmed Critical, Pacmed, Amsterdam) by investigating whether the software improves diagnostic accuracy compared to routine clinical evaluation by the treatment team and whether availability of the information from this software leads to changes in discharge management (either postponing or advancing discharge) for patients considered eligible for discharge. In addition, since this is a novel approach in supporting discharge decision support, information will be collected from end-users with respect to interpretability and usability. Furthermore, model and software improvement will take place during this pilot phase, e.g. with respect to out-of-distribution detection for recognizing patients that are insufficiently similar to the data the model was developed on. Results from this study will be used to develop a clinical trial to evaluate effect on readmission rate and/or mortality after ICU discharge, if considered feasible, based on the effect the software has on potentially changing intensivist decisions, and the estimated effect on readmission and mortality during the On-period. Design: Before-and-after pilot implementation study. For this evaluation, data will be collected both in the periods in which the Pacmed Critical software will not be available to end-users (Off-period, 3-6 months) and during the actual implementation phase where end-users are able to use the software at potential ICU discharge (On-period, 3-6 months). After the implementation phase an additional Off-period (3-6 months) will follow. After the morning hand-off procedure the treatment team consisting of intensivists, fellows in intensive care medicine, medical residents, ICU nurses, and consulting medical specialists ('treatment team'), will determine which patients appear to be eligible for discharge to the nursing (non-ICU) ward. For those patients, the attending intensivist will digitally document the following: For both On- and Off-periods: - 'ready-for-discharge' status, based on the collective evaluation by the treatment team, taking into account the care that can be provided by the receiving ward based on local ICU discharge protocols. Patients that were initially considered 'eligible for ICU discharge' may thus ultimately be considered and documented as 'not ready-for-discharge'. - destination nursing ward - prediction for risk of readmission and/or mortality within 7 days (scale 0-100%), assuming the patient would be discharged - main factors contributing to that decision - Self-reporting of confidence of estimation (low-medium-high). - For patients with a 'ready-for-discharge' decision that were not transferred, at the end of day, to the regular ward the reason for that: - 'Clinical deterioration' - 'Insufficient bed capacity nursing ward' - 'Insufficient isolation capacity nursing ward' Additionally, during On-periods after reviewing the additional information from Pacmed Critical by the treatment team, the previous questions will be asked again to evaluate if re-evaluation with decision support had effect on that decision, i.e. the 'ready-for-discharge' status was changed. During every period the final decision to discharge patients from the ICU is at the discretion of the lead unit intensivist responsible for the medical care of those patients and could change based on alterations in clinical condition of the patient (e.g. deterioration) and/or reasons that require re-evaluation of patients eligible for discharge, including the need to admit other patients. Pseudonymized near real-time data will be extracted in a combined production/research database to perform predictions. The predictions accessed by end-users will be filed together with the additional data collected as specified above. In addition the predicted endpoint (ICU readmission and mortality within 7 days after discharge) will be collected for all patients actually discharged from the ICU. Depending on whether the participating hospital has already passed the technical implementation (i.e. passed device interface and end-user acceptance) after start of the first Off-period Pacmed Critical will be either used prospectively to make the predictions and store the results at the moment of study documentation of the attending intensivist, or retrospectively. The On-period can only commence after the hospital has fully passed technical implementation in accordance with the CE-documentation.


Recruitment information / eligibility

Status Recruiting
Enrollment 1500
Est. completion date June 2023
Est. primary completion date June 2023
Accepts healthy volunteers
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - Admission to intensive care or medium care unit - Age >= 18 years - ICU admission > 4 hours - Eligible for discharge at the discretion of the treatment team by not requiring treatment that can only be provided on the ICU (including but not limited to mechanical ventilation, high flow oxygen, vasopressor/inotropes, continuous renal replacement therapy). Exclusion Criteria: - No-return (to ICU/MCU) policy and/or palliative/end-of-life care - Coronavirus disease (COVID)-19 - Patients directly transferred to other hospitals after discharge

Study Design


Related Conditions & MeSH terms


Intervention

Device:
Pacmed Critical
For patients in the On-period, Pacmed Critical will be available as decision support after initial eligibility screening for ICU discharge by treatment team

Locations

Country Name City State
Netherlands Amsterdam UMC, location VUmc Amsterdam NH
Netherlands Leiden University Medical Center (LUMC) Leiden ZH

Sponsors (2)

Lead Sponsor Collaborator
Patrick J. Thoral Leiden University Medical Center

Country where clinical trial is conducted

Netherlands, 

References & Publications (2)

Thoral PJ, Fornasa M, de Bruin DP, Tonutti M, Hovenkamp H, Driessen RH, Girbes ARJ, Hoogendoorn M, Elbers PWG. Explainable Machine Learning on AmsterdamUMCdb for ICU Discharge Decision Support: Uniting Intensivists and Data Scientists. Crit Care Explor. 2021 Sep 10;3(9):e0529. doi: 10.1097/CCE.0000000000000529. eCollection 2021 Sep. — View Citation

Thoral PJ, Peppink JM, Driessen RH, Sijbrands EJG, Kompanje EJO, Kaplan L, Bailey H, Kesecioglu J, Cecconi M, Churpek M, Clermont G, van der Schaar M, Ercole A, Girbes ARJ, Elbers PWG; Amsterdam University Medical Centers Database (AmsterdamUMCdb) Collaborators and the SCCM/ESICM Joint Data Science Task Force. Sharing ICU Patient Data Responsibly Under the Society of Critical Care Medicine/European Society of Intensive Care Medicine Joint Data Science Collaboration: The Amsterdam University Medical Centers Database (AmsterdamUMCdb) Example. Crit Care Med. 2021 Jun 1;49(6):e563-e577. doi: 10.1097/CCM.0000000000004916. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary area under the receiver operating characteristic curve (AUROC) comparison of AUROC between Pacmed Critical model and intensivists estimation in predicting ICU readmission and/or mortality within 7 days following ICU discharge 7 days after ICU discharge
Primary calibration curve (goodness-of-fit) comparison of calibration curves (binned estimations) of Pacmed Critical model and intensivists estimation in predicting ICU readmission and/or mortality within 7 days following ICU discharge 7 days after ICU discharge
Secondary Number of changes in ready-for-discharge decision after reviewing decision support Change of ready-for-discharge decision after review of decision support software Pacmed Critical through study completion (estimated 1 year)
Secondary Readmission rate within 7 days after ICU discharge Comparison of outcome between On an Off-periods 7 days after ICU discharge
Secondary Mortality rate within 7 days after ICU discharge Comparison of outcome between On an Off-periods 7 days after ICU discharge
Secondary Length of ICU stay Comparison of outcome between On an Off-periods up to 90 days after ICU admission
Secondary Length of hospital stay Comparison of outcome between On an Off-periods up to 90 days after hospital admission
Secondary Estimation of intra-cluster correlation Estimation of intra-cluster correlation through study completion (estimated 1 year)
Secondary Average score on the 3-point Likert-scale 'confidence of risk estimation' with and without decision support Evaluate whether decision support has effect on 'confidence of risk estimation' through study completion (estimated 1 year)
Secondary Number of risk determinants, categorized by organ system as determined by physicians vs model Differences between physician derived risk and by model derived determinants using Shapley additive explanations (SHAP) through study completion (estimated 1 year)
Secondary Software usage metrics Time spent on user interface (UI) elements through study completion (estimated 1 year)
See also
  Status Clinical Trial Phase
Completed NCT04551508 - Delirium Screening 3 Methods Study
Recruiting NCT06037928 - Plasma Sodium and Sodium Administration in the ICU
Completed NCT03671447 - Enhanced Recovery After Intensive Care (ERIC) N/A
Recruiting NCT03941002 - Continuous Evaluation of Diaphragm Function N/A
Recruiting NCT04674657 - Does Extra-Corporeal Membrane Oxygenation Alter Antiinfectives Therapy Pharmacokinetics in Critically Ill Patients
Completed NCT04239209 - Effect of Intensivist Communication on Surrogate Prognosis Interpretation N/A
Completed NCT05531305 - Longitudinal Changes in Muscle Mass After Intensive Care N/A
Terminated NCT03335124 - The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock Phase 4
Completed NCT02916004 - The Use of Nociception Flexion Reflex and Pupillary Dilatation Reflex in ICU Patients. N/A
Recruiting NCT05883137 - High-flow Nasal Oxygenation for Apnoeic Oxygenation During Intubation of the Critically Ill
Completed NCT04479254 - The Impact of IC-Guided Feeding Protocol on Clinical Outcomes in Critically Ill Patients (The IC-Study) N/A
Recruiting NCT04475666 - Replacing Protein Via Enteral Nutrition in Critically Ill Patients N/A
Not yet recruiting NCT04516395 - Optimizing Antibiotic Dosing Regimens for the Treatment of Infection Caused by Carbapenem Resistant Enterobacteriaceae N/A
Not yet recruiting NCT04538469 - Absent Visitors: The Wider Implications of COVID-19 on Non-COVID Cardiothoracic ICU Patients, Relatives and Staff
Withdrawn NCT04043091 - Coronary Angiography in Critically Ill Patients With Type II Myocardial Infarction N/A
Recruiting NCT02989051 - Fluid Restriction Keeps Children Dry Phase 2/Phase 3
Recruiting NCT02922998 - CD64 and Antibiotics in Human Sepsis N/A
Completed NCT03048487 - Protein Consumption in Critically Ill Patients
Completed NCT02899208 - Can an Actigraph be Used to Predict Physical Function in Intensive Care Patients? N/A
Recruiting NCT02163109 - Oxygen Consumption in Critical Illness

External Links