Critical Illness Clinical Trial
— ARTIST-1Official title:
Investigating the Anabolic Response to Resistance Exercise During Critical Illness: The ARTIST-1 Randomized Controlled Trial
Verified date | March 2024 |
Source | Karolinska University Hospital |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
ICU patients often suffer from rapid and severe muscle loss. It is not known if physical therapy can mitigate the muscle wasting associated with critical illness. The aim of this study is to investigate the effects of resistance exercise on muscle protein turnover in ICU patients. The investigators hypothesize that resistance exercise, in addition to amino acid supplementation and routine physiotherapy, results in an improved lower limb muscle protein balance compared to amino acid supplementation and routine physiotherapy alone.
Status | Suspended |
Enrollment | 24 |
Est. completion date | December 2027 |
Est. primary completion date | December 2027 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: 1. Adult (=18 years) patient admitted to the ICU of the study site. 2. Patient deemed suitable for active mobilization by the attending physician and physiotherapist. 3. Not expected to be discharged or transferred from the unit within 24 h of enrollment. 4. Functioning arterial catheter in situ. Exclusion Criteria: 1. Not able to provide informed consent. 2. Systemic anticoagulation with LMWH/UFH/DOAC in therapeutic dose range for deep vein thrombosis or pulmonary embolism, or dual antiplatelet therapy. If LMWH is administered twice daily, the patient is eligible for participation provided that vascular access is performed at nadir prior to the first daily dose. 3. Clinically significant inherited or acquired disorder of hemostasis. 4. Morbid obesity that interferes with femoral cannulation or doppler measurements. 5. Hemodynamic instability requiring ongoing volume resuscitation with crystalloid solutions or blood products. 6. Lower-limb amputee. 7. Lower-limb artherosclerotic disease with critical ischemia. 8. Metastatic cancer or active hematological malignancy. 9. Inherited disorder of amino acid metabolism. 10. Chronic muscle, neuromuscular and neurologic disease with prior documentation of clinically significant lower-limb involvement. 11. Pregnancy. 12. CAM-ICU screening positive for delirium. 13. Single organ failure not requiring invasive mechanical ventilation prior to enrollment. |
Country | Name | City | State |
---|---|---|---|
Sweden | Karolinska University Hospital | Huddinge | Stockholm |
Lead Sponsor | Collaborator |
---|---|
Karolinska University Hospital |
Sweden,
Batt J, Herridge MS, Dos Santos CC. From skeletal muscle weakness to functional outcomes following critical illness: a translational biology perspective. Thorax. 2019 Nov;74(11):1091-1098. doi: 10.1136/thoraxjnl-2016-208312. Epub 2019 Aug 20. — View Citation
Connolly B, Salisbury L, O'Neill B, Geneen L, Douiri A, Grocott MP, Hart N, Walsh TS, Blackwood B; ERACIP Group. Exercise rehabilitation following intensive care unit discharge for recovery from critical illness. Cochrane Database Syst Rev. 2015 Jun 22;2015(6):CD008632. doi: 10.1002/14651858.CD008632.pub2. — View Citation
Doiron KA, Hoffmann TC, Beller EM. Early intervention (mobilization or active exercise) for critically ill adults in the intensive care unit. Cochrane Database Syst Rev. 2018 Mar 27;3(3):CD010754. doi: 10.1002/14651858.CD010754.pub2. — View Citation
Fossat G, Baudin F, Courtes L, Bobet S, Dupont A, Bretagnol A, Benzekri-Lefevre D, Kamel T, Muller G, Bercault N, Barbier F, Runge I, Nay MA, Skarzynski M, Mathonnet A, Boulain T. Effect of In-Bed Leg Cycling and Electrical Stimulation of the Quadriceps on Global Muscle Strength in Critically Ill Adults: A Randomized Clinical Trial. JAMA. 2018 Jul 24;320(4):368-378. doi: 10.1001/jama.2018.9592. — View Citation
Herridge MS, Tansey CM, Matte A, Tomlinson G, Diaz-Granados N, Cooper A, Guest CB, Mazer CD, Mehta S, Stewart TE, Kudlow P, Cook D, Slutsky AS, Cheung AM; Canadian Critical Care Trials Group. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011 Apr 7;364(14):1293-304. doi: 10.1056/NEJMoa1011802. — View Citation
Hickmann CE, Castanares-Zapatero D, Deldicque L, Van den Bergh P, Caty G, Robert A, Roeseler J, Francaux M, Laterre PF. Impact of Very Early Physical Therapy During Septic Shock on Skeletal Muscle: A Randomized Controlled Trial. Crit Care Med. 2018 Sep;46(9):1436-1443. doi: 10.1097/CCM.0000000000003263. — View Citation
Plank LD, Connolly AB, Hill GL. Sequential changes in the metabolic response in severely septic patients during the first 23 days after the onset of peritonitis. Ann Surg. 1998 Aug;228(2):146-58. doi: 10.1097/00000658-199808000-00002. — View Citation
Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, Hopkinson NS, Phadke R, Dew T, Sidhu PS, Velloso C, Seymour J, Agley CC, Selby A, Limb M, Edwards LM, Smith K, Rowlerson A, Rennie MJ, Moxham J, Harridge SD, Hart N, Montgomery HE. Acute skeletal muscle wasting in critical illness. JAMA. 2013 Oct 16;310(15):1591-600. doi: 10.1001/jama.2013.278481. Erratum In: JAMA. 2014 Feb 12;311(6):625. Padhke, Rahul [corrected to Phadke, Rahul]. — View Citation
Wolfe RR. Skeletal muscle protein metabolism and resistance exercise. J Nutr. 2006 Feb;136(2):525S-528S. doi: 10.1093/jn/136.2.525S. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Between-group difference in change in lower limb protein balance | The difference between the experimental and active comparator group in change in lower limb protein balance (nmol Phenylalanine/min) from baseline to post-physiotherapy. Blood samples and lower limb blood flow measurements to determine protein kinetics are performed at baseline (before IV amino acids and physiotherapy) and at 30, 60, and 90 minutes during bed rest after the physiotherapy session. | Time = 165-180 minutes from start of study protocol to approximate Time = 315 minutes from start of study protocol. | |
Secondary | Between-group difference in change in lower limb protein synthesis | The difference between the experimental and active comparator group in change in lower limb protein synthesis (nmol Phenylalanine/min) from baseline to post-physiotherapy. Blood samples and lower limb blood flow measurements to determine protein kinetics are performed at baseline (before IV amino acids and physiotherapy) and at 30, 60, and 90 minutes during bed rest after the physiotherapy session. | Time = 165-180 minutes from start of study protocol to approximate Time = 315 minutes from start of study protocol. | |
Secondary | Between-group difference in change in lower limb protein breakdown | The difference between the experimental and active comparator group in change in lower limb protein breakdown (nmol Phenylalanine/min) from baseline to post-physiotherapy. Blood samples and lower limb blood flow measurements to determine protein kinetics are performed at baseline (before IV amino acids and physiotherapy) and at 30, 60, and 90 minutes during bed rest after the physiotherapy session. | Time = 165-180 minutes from start of study protocol to approximate Time = 315 minutes from start of study protocol. | |
Secondary | Between-group difference in change in lower limb 3-methylhistidine rate of appearance | The difference between the experimental and active comparator group in change in lower limb 3-methylhistidine rate of appearance (nmol 3-methylhistidine/min) from baseline to post-physiotherapy. Blood samples and lower limb blood flow measurements to determine protein kinetics are performed at baseline (before IV amino acids and physiotherapy) and at 30, 60, and 90 minutes during bed rest after the physiotherapy session. | Time = 165-180 minutes from start of study protocol to approximate Time = 315 minutes from start of study protocol. | |
Secondary | Within-group change in lower limb protein balance (experimental group) | The change in lower limb protein balance (nmol Phenylalanine/min) in the experimental group, from baseline to post-physiotherapy. Blood samples and lower limb blood flow measurements to determine protein kinetics are performed at baseline (before IV amino acids and physiotherapy) and at 30, 60, and 90 minutes during bed rest after the physiotherapy session. | Time = 165-180 minutes from start of study protocol to approximate Time = 315 minutes from start of study protocol. | |
Secondary | Within-group change in lower limb protein balance (active comparator group) | The change in lower limb protein balance (nmol Phenylalanine/min) in the active comparator group, from baseline to post-physiotherapy. Blood samples and lower limb blood flow measurements to determine protein kinetics are performed at baseline (before IV amino acids and physiotherapy) and at 30, 60, and 90 minutes during bed rest after the physiotherapy session. | Time = 165-180 minutes from start of study protocol to approximate Time = 315 minutes from start of study protocol. | |
Secondary | Within-group change in lower limb protein synthesis (experimental group) | The change in lower limb protein synthesis (nmol Phenylalanine/min) in the experimental group, from baseline to post-physiotherapy. Blood samples and lower limb blood flow measurements to determine protein kinetics are performed at baseline (before IV amino acids and physiotherapy) and at 30, 60, and 90 minutes during bed rest after the physiotherapy session. | Time = 165-180 minutes from start of study protocol to approximate Time = 315 minutes from start of study protocol. | |
Secondary | Within-group change in lower limb protein synthesis (active comparator group) | The change in lower limb protein synthesis (nmol Phenylalanine/min) in the active comparator group, from baseline to post-physiotherapy. Blood samples and lower limb blood flow measurements to determine protein kinetics are performed at baseline (before IV amino acids and physiotherapy) and at 30, 60, and 90 minutes during bed rest after the physiotherapy session. | Time = 165-180 minutes from start of study protocol to approximate Time = 315 minutes from start of study protocol. | |
Secondary | Within-group change in lower limb protein breakdown (experimental group) | The change in lower limb protein breakdown (nmol Phenylalanine/min) in the experimental group, from baseline to post-physiotherapy. Blood samples and lower limb blood flow measurements to determine protein kinetics are performed at baseline (before IV amino acids and physiotherapy) and at 30, 60, and 90 minutes during bed rest after the physiotherapy session. | Time = 165-180 minutes from start of study protocol to approximate Time = 315 minutes from start of study protocol. | |
Secondary | Within-group change in lower limb protein breakdown (active comparator group) | The change in lower limb protein breakdown (nmol Phenylalanine/min) in the active comparator group, from baseline to post-physiotherapy. Blood samples and lower limb blood flow measurements to determine protein kinetics are performed at baseline (before IV amino acids and physiotherapy) and at 30, 60, and 90 minutes during bed rest after the physiotherapy session. | Time = 165-180 minutes from start of study protocol to approximate Time = 315 minutes from start of study protocol. | |
Secondary | Within-group change in lower limb 3-methylhistidine rate of appearance (experimental group) | The change in lower limb 3-methylhistidine rate of appearance (nmol 3-methylhistidine/min) in the experimental group, from baseline to post-physiotherapy. Blood samples and lower limb blood flow measurements to determine protein kinetics are performed at baseline (before IV amino acids and physiotherapy) and at 30, 60, and 90 minutes during bed rest after the physiotherapy session. | Time = 165-180 minutes from start of study protocol to approximate Time = 315 minutes from start of study protocol. | |
Secondary | Within-group change in lower limb 3-methylhistidine rate of appearance (active comparator group) | The change in lower limb 3-methylhistidine rate of appearance (nmol 3-methylhistidine/min) in the active comparator group, from baseline to post-physiotherapy. Blood samples and lower limb blood flow measurements to determine protein kinetics are performed at baseline (before IV amino acids and physiotherapy) and at 30, 60, and 90 minutes during bed rest after the physiotherapy session. | Time = 165-180 minutes from start of study protocol to approximate Time = 315 minutes from start of study protocol. |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04551508 -
Delirium Screening 3 Methods Study
|
||
Recruiting |
NCT06037928 -
Plasma Sodium and Sodium Administration in the ICU
|
||
Completed |
NCT03671447 -
Enhanced Recovery After Intensive Care (ERIC)
|
N/A | |
Recruiting |
NCT03941002 -
Continuous Evaluation of Diaphragm Function
|
N/A | |
Recruiting |
NCT04674657 -
Does Extra-Corporeal Membrane Oxygenation Alter Antiinfectives Therapy Pharmacokinetics in Critically Ill Patients
|
||
Completed |
NCT04239209 -
Effect of Intensivist Communication on Surrogate Prognosis Interpretation
|
N/A | |
Completed |
NCT05531305 -
Longitudinal Changes in Muscle Mass After Intensive Care
|
N/A | |
Terminated |
NCT03335124 -
The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock
|
Phase 4 | |
Completed |
NCT02916004 -
The Use of Nociception Flexion Reflex and Pupillary Dilatation Reflex in ICU Patients.
|
N/A | |
Recruiting |
NCT05883137 -
High-flow Nasal Oxygenation for Apnoeic Oxygenation During Intubation of the Critically Ill
|
||
Completed |
NCT04479254 -
The Impact of IC-Guided Feeding Protocol on Clinical Outcomes in Critically Ill Patients (The IC-Study)
|
N/A | |
Recruiting |
NCT04475666 -
Replacing Protein Via Enteral Nutrition in Critically Ill Patients
|
N/A | |
Not yet recruiting |
NCT04538469 -
Absent Visitors: The Wider Implications of COVID-19 on Non-COVID Cardiothoracic ICU Patients, Relatives and Staff
|
||
Not yet recruiting |
NCT04516395 -
Optimizing Antibiotic Dosing Regimens for the Treatment of Infection Caused by Carbapenem Resistant Enterobacteriaceae
|
N/A | |
Withdrawn |
NCT04043091 -
Coronary Angiography in Critically Ill Patients With Type II Myocardial Infarction
|
N/A | |
Recruiting |
NCT02922998 -
CD64 and Antibiotics in Human Sepsis
|
N/A | |
Recruiting |
NCT02989051 -
Fluid Restriction Keeps Children Dry
|
Phase 2/Phase 3 | |
Completed |
NCT02899208 -
Can an Actigraph be Used to Predict Physical Function in Intensive Care Patients?
|
N/A | |
Completed |
NCT03048487 -
Protein Consumption in Critically Ill Patients
|
||
Recruiting |
NCT02163109 -
Oxygen Consumption in Critical Illness
|