Clinical Trials Logo

Clinical Trial Summary

The purpose of this prospective, randomized controlled trial is to investigate if mechanically ventilated patients who are treated with a Light Scheduling Algorithm with high circadian effective irradiances are better able to preserve and induce physiological melatonin rhythms compared to patients who are treated with an application of lower irradiances. The investigators will further evaluate the impact on delirium prevalence, stress level and general outcome parameters.


Clinical Trial Description

Circadian disruption affects the majority of ICU patients and has far-reaching effects on organ functioning. At the level of the central nervous system, circadian misalignment facilitates executive cognitive dysfunction and the development of brain disorders such as ICU delirium. The suprachiasmatic nucleus (SCN) in the hypothalamus serves as the master pacemaker that sets the timing of circadian rhythms by regulating neuronal activity. Its function is determined by environmental factors, especially visible light with a high content of blue light components. Light as a photoperiodic signal has a great impact on the regulation of the epiphyseal melatonin secretion and the entrainment of the day-night rhythm. As a result using light therapy to maintain or entrain circadian rhythm seems to be a promising approach to prevent delirium in critically ill patients. The specific light effect on the rhythmicity of the melatonin levels is to be examined in a randomized controlled study design, which includes the application of three different Light Scheduling Algorithms. In this context a highly specialized light ceiling was installed in two patient treatment rooms. A Light Scheduling Algorithm (LSA) consists of specified values for illuminance [lux] and correlated color temperature (CCT, [kelvin]) for different time points and durations within a 24-hour period. These values are calculated by assessment of photometric light measures with regard to visual light effects as well as non-image-forming functions at the patients bedside. Patients will be randomly allocated in to 3 treatment groups: (1) LSA-1 (high circadian effective irradiances + blue Light Intervention), (2) LSA-2 (high circadian effective irradiances without blue light intervention) and (3) LSA-3 (standard irradiances, Control Group). All LSAs will be applied to the patient using VitalSky Advanced. For the purpose of validation of efficacy of specific light interventions, blood samples for measurement of melatonin concentration will be collected. The temporal study sequence is defined by treatment days and measurement series periods (SMAP-1 to SMAP-4, Serum Melatonin Assessment Period). SMAP-1 starts on the first morning at 06:00 a.m. after study inclusion. SMAP-1 through SMAP-4 each define 24-hour periods in which the blood melatonin concentration is determined every 4 hours (6 am, 10 am, 2 pm, 6 pm, 10 pm, 2 am, 6 am). The SMAP-1 is intended to determine the patient's individual melatonin baseline. SMAP-2 to SMAP-4 start only when the patient has reached a stable level of wakefulness (RASS ≥-3 ). It can be assumed that the light intervention will only have an effect on melatonin balance from this level of wakefulness. A total of 4 SMAPs are planned per study patient. Main Hypothesis: Ventilated ICU patients receiving increased irradiance lighting may differ in the rhythmicity of serum melatonin concentrations and more frequently exhibit physiologic circadian melatonin secretions compared with patients receiving conventional irradiance lighting. Secondary Hypotheses: 1. Ventilated intensive care patients receiving illumination with increased irradiance and phases of Blue-Enriched White light (BEW) differ in the rhythmicity of serum melatonin concentrations compared with patients receiving illumination with increased irradiance but without BEW. 2. Ventilated intensive care patients receiving illumination with increased irradiance and phases with BEW differ in the rhythmicity of serum melatonin concentrations compared with patients receiving illumination with conventional irradiance. 3. Ventilated intensive care patients receiving illumination with increased irradiance without phases with BEW differ in the rhythmicity of serum melatonin concentrations compared with patients receiving illumination with conventional irradiance. 4. Ventilated intensive care patients receiving increased irradiance lighting and periods of BEW have a lower incidence of delirium than patients receiving conventional irradiance lighting. 5. Ventilated intensive care patients receiving increased irradiance lighting and periods of BEW have lower delirium severity than patients receiving conventional irradiance lighting. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05556811
Study type Interventional
Source Charite University, Berlin, Germany
Contact
Status Completed
Phase N/A
Start date September 1, 2022
Completion date May 31, 2024

See also
  Status Clinical Trial Phase
Recruiting NCT05114551 - ICU Predictive Score of WEaning Success in Patients At Risk of Extubation Failure
Completed NCT05547646 - The Prevalence of Healthcare-associated Infection in Medical Intensive Care Units in Tunisia
Recruiting NCT03697785 - Weaning Algorithm for Mechanical VEntilation N/A
Completed NCT02922101 - Evaluation of the Effectiveness of an Audit and Feedback Intervention With Quality Improvement Toolbox in Intensive Care N/A
Completed NCT02902783 - DONATE-Pilot Study on ICU Management of Deceased Organ Donors
Completed NCT01885442 - TryCYCLE: A Pilot Study of Early In-bed Leg Cycle Ergometry in Mechanically Ventilated Patients N/A
Completed NCT01857986 - Evaluating Air Leak Detection in Intubated Patients N/A
Recruiting NCT05518955 - VR Integrated Into Multicomponent Interventions for Improving Sleep in ICU N/A
Recruiting NCT03810768 - Metabolomics Study on Postoperative Intensive Care Acquired Muscle Weakness
Completed NCT03295630 - Validity of an Actigraph Accelerometer Following Critical Illness N/A
Recruiting NCT05702411 - Air Stacking Technique For Pulmonary Reexpansion N/A
Completed NCT02741453 - Bilateral Internal Jugular Veins Ultrasound Scanning Prior to CVC Placement N/A
Recruiting NCT04979897 - Impact on Mental, Physical, And Cognitive Functioning of a Critical Care sTay During the COVID-19 Pandemic
Completed NCT05281224 - Ventilator Tube Holder for Patients With a Tracheostomy
Withdrawn NCT02970903 - VitalPAD: an Intelligent Monitoring and Communication Device to Optimize Safety in the PICU N/A
Recruiting NCT02587273 - The Pharmacokinetics of Fentanyl in Intensive Care Patients Phase 4
Completed NCT02661607 - Point of Care Echocardiography Versus Chest Radiography for the Assessment of Central Venous Catheter Placement N/A
Completed NCT01479153 - Venous Site for Central Catheterization N/A
Recruiting NCT06110390 - High-flow Nasal Oxygen Therapy to Prevent Extubation Failure in Adult Trauma Intensive Care Patients N/A
Not yet recruiting NCT05593380 - The Effect of BIA Monitoring of Brain Edema on the Neurological Prognosis of Supratentorial Massive ICH N/A