Clinical Trials Logo

Clinical Trial Summary

Millimeter wave radar will be used to conduct non-contact monitoring continuously for patients' vital signs (eg. respiratory rate, heart rate, and chest/abdominal movement). The monitoring information will be transmitted to the central system through network and displayed in real time. Comparison with polysomnography will be done to examine the consistency between the two devices in diagnosing sleep breathing disorders. The predictive model of acute exacerbations of COPD will be established with the baseline indicators considered.


Clinical Trial Description

Significance: This study will conduct non-contact monitoring among COPD patients with sleep apnea hypopnea for respiratory rate, heart rate, respiratory rhythm and thoracic amplitude. This monitoring could not only offer patients a more comfortable medical environment, but also maintain high quality of monitoring, which would help build the platform for prediction and management of COPD combined with sleep breathing disorders with great clinical significance. Background: The misdiagnosis, underdiagnosis and disease burden of sleep breathing disorders in patients with COPD are high, which is one of the neglected problems in the management of COPD in China at present. The prevalence of obstructive sleep apnea (OSA) among COPD patients is 37.9-52.8%. Patients with overlapping COPD and OSA had more frequent hypoxemia during sleep and a longer total sleep duration for hypoxemia and hypercapnia than patients with OSA or COPD alone. The millimeter-wave radar equipment used in this study is from Qinglei Intelligent Health Care Life Support System. The system is based on millimeter wave radar intellisense and artificial intelligence technology, geared to the needs of health institutions, community endowment, family endowment, medical institutions, etc., to provide sleep monitoring, monitoring vital signs data, user behavior analysis, life vigor analysis, user exception alarm, falling alarm, diagnosis and screening of chronic respiratory disease, help with primary screening and early diagnosis of the disease and the patient-centered personalized precision diagnosis and treatment, enable early detection and treatment of health risks through scientific and technological means, and make more effective use of medical resources. The Peking University Third Hospital has actively promoted the construction of Internet-based medical services, and has passed the on-site evaluation of Internet hospital qualification, and realized Internet-based diagnosis and treatment. The Department of Respiratory and Critical Care Medicine has been engaged in clinical and applied basic research on COPD and its complications for a long time, which has a in-depth research foundation. Objective: To verify the consistency between millimeter wave radar equipment and traditional sleep monitoring equipment in the collection of respiratory rate, heart rate and respiratory movement of patients with COPD alone or COPD combined with sleep apnea hypopnea syndrome. Combined with pulse oxygen saturation, end expiratory CO2 monitoring and other indicators, the data model established is conducive to early detection of aggravation of COPD combined with sleep apnea hypopnea syndrome based on clinical indicators, which has important clinical value in practice. Content: Millimeter wave radar will be used to conduct non-contact monitoring continuously for patients' vital signs (eg. respiratory rate, heart rate, and chest/abdominal movement). The monitoring information will be transmitted to the central system through network and displayed in real time. Comparison with polysomnography will be done to examine the consistency between the two devices in diagnosing sleep breathing disorders. The predictive model of acute exacerbations of COPD will be established with the baseline indicators considered. Methods: The patients with COPD alone and patients with COPD combined with sleep apnea hypopnea were monitored by traditional sleep monitoring equipment and millimeter wave radar equipment. The patients were continuously monitored by millimeter wave radar equipment and followed up for acute exacerbation of COPD. Period: October 2021-September 2022 Expected results: The consistency between non-contact millimeter-wave radar equipment and routine clinical monitoring in the diagnosis of COPD combined with sleep apnea hypopnea syndrome. Based on the non-contact millimeter-wave radar equipment, a predictive model of acute exacerbation of COPD combined with sleep apnea hypopnea syndrome was established to provide evidence for the clinical application of radar equipment in the future. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05019911
Study type Observational
Source Peking University Third Hospital
Contact Yahong Chen
Phone 861082266699
Email chenyahong@vip.sina.com
Status Not yet recruiting
Phase
Start date October 2021
Completion date October 2022

See also
  Status Clinical Trial Phase
Enrolling by invitation NCT06000696 - Healthy at Home Pilot
Active, not recruiting NCT03927820 - A Pharmacist-Led Intervention to Increase Inhaler Access and Reduce Hospital Readmissions (PILLAR) N/A
Completed NCT04043728 - Addressing Psychological Risk Factors Underlying Smoking Persistence in COPD Patients: The Fresh Start Study N/A
Completed NCT04105075 - COPD in Obese Patients
Recruiting NCT05825261 - Exploring Novel Biomarkers for Emphysema Detection
Active, not recruiting NCT04075331 - Mepolizumab for COPD Hospital Eosinophilic Admissions Pragmatic Trial Phase 2/Phase 3
Terminated NCT03640260 - Respiratory Regulation With Biofeedback in COPD N/A
Recruiting NCT04872309 - MUlti-nuclear MR Imaging Investigation of Respiratory Disease-associated CHanges in Lung Physiology
Recruiting NCT05145894 - Differentiation of Asthma/COPD Exacerbation and Stable State Using Automated Lung Sound Analysis With LungPass Device
Withdrawn NCT04210050 - Sleep Ventilation for Patients With Advanced Hypercapnic COPD N/A
Terminated NCT03284203 - Feasibility of At-Home Handheld Spirometry N/A
Recruiting NCT06110403 - Impact of Long-acting Bronchodilator- -Corticoid Inhaled Therapy on Ventilation, Lung Function and Breathlessness Phase 1/Phase 2
Active, not recruiting NCT06040424 - Comparison of Ipratropium / Levosalbutamol Fixed Dose Combination and Ipratropium and Levosalbutamol Free Dose Combination in pMDI Form in Stable Chronic Obstructive Pulmonary Disease (COPD) Patients Phase 3
Recruiting NCT05865184 - Evaluation of Home-based Sensor System to Detect Health Decompensation in Elderly Patients With History of CHF or COPD
Recruiting NCT04868357 - Hypnosis for the Management of Anxiety and Breathlessness During a Pulmonary Rehabilitation Program N/A
Completed NCT01892566 - Using Mobile Health to Respond Early to Acute Exacerbations of COPD in HIV N/A
Completed NCT04119856 - Outgoing Lung Team - a Cross-sectorial Intervention in Patients With COPD N/A
Completed NCT04485741 - Strados System at Center of Excellence
Completed NCT03626519 - Effects of Menthol on Dyspnoea in COPD Patients N/A
Recruiting NCT04860375 - Multidisciplinary Management of Severe COPD N/A