Clinical Trials Logo

Clinical Trial Details — Status: Withdrawn

Administrative data

NCT number NCT04042168
Other study ID # IRB-300003947
Secondary ID
Status Withdrawn
Phase Phase 4
First received
Last updated
Start date September 25, 2019
Est. completion date August 9, 2022

Study information

Verified date August 2022
Source University of Alabama at Birmingham
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Using various types of inhalers is the treatment cornerstone for COPD patients to control their symptoms. Many inhaler devices require minimum inspiratory effort to activate the device, COPD patients commonly use such devices. Those devices deliver the medications only when the patient forcefully inhales so the drug can reach the lungs, thus exerting their therapeutic action. The effect of appropriate use of the inhalers in patients with COPD is not well studied, and the impact of demonstrating that a patient can inhale forcefully enough to activate a device on its' effect on symptoms is also lacking in the medical literature. The purpose of this study is to find out: 1. the frequency of COPD patients demonstrating an appropriate use of inhalers that have flow-triggered systems, 2. whether the appropriate use of inhalers impacts the Quality of Life and Shortness of Breath of COPD patients, and 3. the impact of appropriate use of inhalers on FEV1 in COPD patients.


Description:

Chronic obstructive pulmonary disease (COPD) is a chronic systemic inflammatory disease associated with substantial morbidity and mortality and is now the 3rd leading cause of death in the United States. The majority of COPD-related symptoms are managed using inhaled therapy. Inhalation is a safe, efficacious and quick way for drug delivery. Inhaled therapy permits direct availability of the active drug to the lungs, requiring lower doses of the drug and causing lower systemic side effects as compared to oral therapy. There are four major types of inhalation devices: pressurized metered-dose inhalers (MDI), dry powder inhalers (DPI), soft mist inhalers (SMI), and nebulizers. Every type has its advantages and disadvantages that are important to understand to determine their suitability for COPD patients. Despite that, choosing the appropriate device for patients remains a challenge for the prescribing physician. For all inhaler devices, training patients on how to use them appropriately is required to attain ideal therapeutic benefits. Multiple studies have estimated that about 28-68% of patients were inappropriately using their inhalation devices to benefit from the prescribed drug. Brocklebank et al. performed a systematic review looking at the effectiveness of inhaler device use in COPD and asthma patients. They found that ideal inhaler scores were reached by 59% of subjects with DPIs and 43% with MDIs. 5 on the other hand, the aggregate data from this systematic review showed that after teaching the correct technique there was no difference in patients' ability to use DPI or MDIs. One of the common problems leading to inappropriate use of the inhalation devices is breath asynchrony. An in-vitro study done by Wilkes et al. showed that breath asynchrony significantly decreases the mass of medication inhaled from an MDI. It showed that actuation of only one second earlier to inhalation decreases the inhaled mass of medication by about 90%. Likewise, actuation later on in the inspiratory cycle could lead to filling the anatomic dead space with the aerosolized medication. This issue seems to be less pronounced in DPI devices, as those systems are mainly passive in their function depending on the mechanical effort of the patient to release the medication and supply it to the effective areas inside the lungs through inspiration. On the other hand, there seem to be multiple factors leading to suboptimal use of DPIs such as the inability to activate the device with enough inspiratory effort. Very limited studies looked at the inspiratory effort for COPD patients and the efficacy of inhaler use. Burnell et al. looked at the performance of 17 COPD patients with severe obstruction using an inhalation simulator to establish dosing performance of the Diskus inhaler with fluticasone and Turbuhaler inhaler with budesonide. Peak inspiratory flow was significantly higher through the Diskus as compared with Turbuhaler (mean 82.3 l/min vs 53.5 l/min, P < 0.001). Also, the Diskus inhaler was shown that drug delivery was more dependent on peak inspiratory flow with the Turbuhaler than with the Diskus. On the other hand, a study looked at the performance of a high resistance inhaler (HandiHaler) in 26 men with stable COPD. Patients were categorized into 3 groups of severity, based on their predicted FEV-1(less than 27%, 28 - 45%, and more than 46%) and then measured the inspiratory flow through the HandiHaler. The median peak inspiratory flow rates for each group were 45, 45.6, and 35.4 L/min respectively. The minimum peak inspiratory flow rates were 28.2, 21.6 and 20.4 L/min. The authors then conducted an in-vitro analysis to assess the minimum inspiratory flow rate indicated for the delivery of the medication and found to be at flow rates as low as 20 l/min. They concluded that drug delivery was adequate despite the severity of COPD. Up to our knowledge, no previous studies looked at the change of symptoms control in-vivo in relation to the inhalation effort of COPD patients and the appropriate use of their inhalers. The investigators hypothesize that COPD patients with high peak inspiratory flow rates and appropriate use of inhalers device have better symptoms control with using breath-actuated inhalers as compared to patients who fail to actuate inhalers devices (inappropriate use of inhalers) and have low peak inspiratory flow. The investigators have designed a prospective study to determine the inspiratory effort status and the change of symptoms in stable COPD patients seen as outpatient. Pulmonary function testing, COPD related quality of life and shortness of breath will be assessed at baseline and 3 months after obtaining the status of inhalers use at baseline.


Recruitment information / eligibility

Status Withdrawn
Enrollment 0
Est. completion date August 9, 2022
Est. primary completion date August 9, 2022
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 40 Years and older
Eligibility Inclusion Criteria: - provide informed consent - age 40 and older - history of COPD - screen at pulmonology clinic - on at least one maintenance inhaler Exclusion Criteria: - Patients with a secondary diagnosis of congestive heart failure and other respiratory conditions that the investigators deem could confound the diagnosis including but not limited to pneumonia - bronchiectasis and lung cancer will be excluded - pregnant or breastfeeding women will be excluded - patients with conditions that preclude an adequate peak inspiratory flowmetry including but limited to facial deformities - neurologic disorders precluding command following - trachestomy dependent patients

Study Design


Related Conditions & MeSH terms


Intervention

Diagnostic Test:
In Check Dial test
In Check Dial test will test the ability to actuate the inhaler.

Locations

Country Name City State
United States UAB Department of Medicine, Pulmonary Division Birmingham Alabama

Sponsors (1)

Lead Sponsor Collaborator
University of Alabama at Birmingham

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary Proportion of subjects with COPD on inappropriate inhalers The frequency of COPD patients demonstrating an inappropriate use of inhalers that have flow-triggered systems Baseline
Primary Change in St George's Respiratory Questionnaire (SGRQ) Score in 3 months Whether the appropriate use of inhalers impacts the quality of life and symptom control of COPD patients. SGRQ score ranges from 0 to 100, higher the score worse the quality of life. A change of 4 units is considered the minimum clinically important difference. 3 months
Primary Change in the forced expiratory volume in the first second (FEV1) in 3 months Whether the appropriate use of inhalers impacts the lung function of COPD patients. 3 months
Primary Change in shortness of breath in 3 months measured using the San Diego Shortness of breath Questionnaire. Whether the appropriate use of inhalers impacts shortness of breath in COPD patients. The Shortness of Breath Questionnaire score ranges from 0 to 100, higher the score worse the quality of life. A change of 5 units is considered the minimum clinically important difference. 3 months
See also
  Status Clinical Trial Phase
Completed NCT05102305 - A Multi-center,Prospective, OS to Evaluate the Effectiveness of 'NAC' Nebulizer Therapy in COPD (NEWEST)
Completed NCT01867762 - An Effectiveness and Safety Study of Inhaled JNJ 49095397 (RV568) in Patients With Moderate to Severe Chronic Obstructive Pulmonary Disease Phase 2
Recruiting NCT05562037 - Stepped Care vs Center-based Cardiopulmonary Rehabilitation for Older Frail Adults Living in Rural MA N/A
Terminated NCT04921332 - Bright Light Therapy for Depression Symptoms in Adults With Cystic Fibrosis (CF) and COPD N/A
Completed NCT03089515 - Small Airway Chronic Obstructive Disease Syndrome Following Exposure to WTC Dust N/A
Completed NCT02787863 - Clinical and Immunological Efficiency of Bacterial Vaccines at Adult Patients With Bronchopulmonary Pathology Phase 4
Recruiting NCT05552833 - Pulmonary Adaptive Responses to HIIT in COPD N/A
Recruiting NCT05835492 - A Pragmatic Real-world Multicentre Observational Research Study to Explore the Clinical and Health Economic Impact of myCOPD
Recruiting NCT05631132 - May Noninvasive Mechanical Ventilation (NIV) and/or Continuous Positive Airway Pressure (CPAP) Increase the Bronchoalveolar Lavage (BAL) Salvage in Patients With Pulmonary Diseases? N/A
Completed NCT03244137 - Effects of Pulmonary Rehabilitation on Cognitive Function in Patients With Severe to Very Severe Chronic Obstructive Pulmonary Disease
Not yet recruiting NCT03282526 - Volume Parameters vs Flow Parameters in Assessment of Reversibility in Chronic Obstructive Pulmonary Disease N/A
Completed NCT02546700 - A Study to Evaluate Safety and Efficacy of Lebrikizumab in Participants With Chronic Obstructive Pulmonary Disease (COPD) Phase 2
Withdrawn NCT04446637 - Acute Bronchodilator Effects of Ipratropium/Levosalbutamol 20/50 mcg Fixed Dose Combination vs Salbutamol 100 mcg Inhaler Plus Ipratropium 20 mcg Inhalation Aerosol Free Combination in Patients With Stable COPD Phase 3
Completed NCT04535986 - A Phase 3 Clinical Trial to Evaluate the Safety and Efficacy of Ensifentrine in Patients With COPD Phase 3
Recruiting NCT05865184 - Evaluation of Home-based Sensor System to Detect Health Decompensation in Elderly Patients With History of CHF or COPD
Completed NCT03256695 - Evaluate the Relationship Between Use of Albuterol Multidose Dry Powder Inhaler With an eModule (eMDPI) and Exacerbations in Participants With Chronic Obstructive Pulmonary Disease (COPD) Phase 3
Completed NCT03295474 - Telemonitoring in Pulmonary Rehabilitation: Feasibility and Acceptability of a Remote Pulse Oxymetry System.
Completed NCT03414541 - Safety And Efficacy Study Of Orally Administered DS102 In Patients With Chronic Obstructive Pulmonary Disease Phase 2
Completed NCT02552160 - DETECT-Register DocumEnTation and Evaluation of a COPD Combination Therapy
Recruiting NCT05306743 - PRagmatic EVAluation of a Quality Improvement Program for People Living With Modifiable High-risk COPD. N/A