Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT03068026
Other study ID # HRC-GRA-17030-VBREATH-SH
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date June 6, 2017
Est. completion date September 30, 2018

Study information

Verified date March 2021
Source North Tyneside General Hospital
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

People with COPD have more air in their lungs than other people (this problem with high lung volumes is called "hyperinflation"). Unfortunately this is unhelpful as breathing at higher lung volumes requires more effort and contributes to breathlessness. When anyone exercises, they breathe more quickly. People with COPD have narrowed airways, which makes breathing out difficult. When they breathe more quickly they may not be able to breathe out fully before they need to take the next breath in. This means that the volume of air in their lungs tends to increase further during exercise, which makes breathing even more difficult. This problem is called "dynamic hyperinflation". Pulmonary rehabilitation is one of the most helpful interventions for people with COPD and most of the benefit gained is from exercise. Anything that helps people increase the amount of exercise they can perform should lead to further improvements. Non-invasive positive pressure ventilation is a method of supporting a person's normal breathing. The ventilator delivers a flow of air at low pressure as you breathe out, which helps patients to breathe out more completely. The device also detects when patients start to breathe in and delivers a stronger flow of air at a higher pressure, helping them to take a deeper breath in. Previous research studies have shown that when people with COPD use non-invasive ventilation during exercise they are able to exercise for longer and are less breathless. The purpose of this study is to assess whether a new portable non-invasive ventilation device, called the VitaBreath, helps people with COPD recover from breathlessness during the exercise breaks more quickly (by reducing "dynamic hyperinflation", described above) and to exercise for longer overall. The VitaBreath device is small and light, weighing 0.5 kilograms (just over one pound). It is handheld and battery powered.


Description:

In patients with chronic obstructive pulmonary disease (COPD) dynamic hyperinflation (DH) and the concurrent mechanical constraints on tidal volume expansion during exercise increase work of breathing and perceived respiratory discomfort, limiting endurance. An additional consequence of DH and the concomitant high mean intrathoracic pressure swings, cardiac performance and, hence, supply of oxygenated blood to the malfunctioning peripheral muscles is further compromised. This contributes to perceived leg discomfort and exercise intolerance. Bronchodilator therapy is associated with a reduction in operating lung volumes, leading to improvements in perceived breathlessness and exercise tolerance. Heliox (helium and oxygen) is less dense and generates less airway resistance than air. Heliox breathing has been shown to improve exercise tolerance in COPD. A recent study demonstrated that compared to room air, breathing heliox during constant-load exercise (CLE) (continuous) increased inspiratory capacity (IC), and lessened DH, breathlessness and leg discomfort at isotime and at the point of exercise limitation. In addition, heliox breathing increased stroke volume, cardiac output and hence locomotor muscle oxygen delivery. However, the main drawback of heliox supplementation is the high cost, especially when it is used for long periods of time. Previous studies using inspiratory pressure support have shown improvements in dyspnoea and exercise capacity by reducing the work of breathing, as well as improved central hemodynamic responses and peripheral muscle oxygenation. In comparison to traditional noninvasive ventilators, the Vitabreath device, which provides positive inspiratory pressure, is compact, light and inexpensive. Ease of operation, portability and battery life support use to aid relief of breathlessness, including away from the patient's home. This should facilitate maintenance of, and improvement in, activity. Vitabreath may also prove to be a useful tool to increasing exercise tolerance and the intensity of training, and hence the magnitude of physiological adaptations by mitigating DH during rehabilitative exercise training.


Recruitment information / eligibility

Status Completed
Enrollment 24
Est. completion date September 30, 2018
Est. primary completion date June 18, 2018
Accepts healthy volunteers No
Gender All
Age group 40 Years to 80 Years
Eligibility Inclusion Criteria: 1. Male or female aged 40 years or older. 2. Current or previous smoking history: 10 or more pack years. 3. Spirometry confirmed stable COPD (GOLD stages II-IV) under optimal medical therapy. 4. Exhibit substantial exercise-induced dynamic hyperinflation (?IC baseline > 0.15 L) Exclusion Criteria: 1. Orthopaedic, neurological or other concomitant diseases that significantly impair normal biomechanical movement patterns, as judged by the investigator. 2. Moderate or severe COPD exacerbation within 6 weeks. 3. Unstable cardiac arrhythmia. 4. Unstable ischaemic heart disease, including myocardial infarction within 6 weeks. 5. Moderate or severe aortic stenosis or hypertrophic obstructive cardiomyopathy. 6. Uncontrolled hypertension. 7. Uncontrolled hypotension (SBP<85mmHg). 8. Uncontrolled diabetes. 9. Intolerance of the VitaBreath device.

Study Design


Related Conditions & MeSH terms


Intervention

Device:
VitaBreath
The VitaBreath devise will be applied during the 1st minute of each resting period between exercise bouts and during the 1st minute of recovery.
Other:
Pursed Lip Breathing technique
Pursed Lip Breathing technique will be applied during the 1st minute of each resting period between exercise bouts and during the 1st minute of recovery.

Locations

Country Name City State
United Kingdom North Tyneside General Hospital Newcastle Upon Tyne Northumberland

Sponsors (2)

Lead Sponsor Collaborator
North Tyneside General Hospital Northumbria University

Country where clinical trial is conducted

United Kingdom, 

References & Publications (10)

Ambrosino N, Cigni P. Non invasive ventilation as an additional tool for exercise training. Multidiscip Respir Med. 2015 Apr 9;10(1):14. doi: 10.1186/s40248-015-0008-1. eCollection 2015. — View Citation

Bianchi L, Foglio K, Pagani M, Vitacca M, Rossi A, Ambrosino N. Effects of proportional assist ventilation on exercise tolerance in COPD patients with chronic hypercapnia. Eur Respir J. 1998 Feb;11(2):422-7. — View Citation

Keilty SE, Ponte J, Fleming TA, Moxham J. Effect of inspiratory pressure support on exercise tolerance and breathlessness in patients with severe stable chronic obstructive pulmonary disease. Thorax. 1994 Oct;49(10):990-4. — View Citation

Louvaris Z, Vogiatzis I, Aliverti A, Habazettl H, Wagner H, Wagner P, Zakynthinos S. Blood flow does not redistribute from respiratory to leg muscles during exercise breathing heliox or oxygen in COPD. J Appl Physiol (1985). 2014 Aug 1;117(3):267-76. doi: 10.1152/japplphysiol.00490.2014. Epub 2014 Jun 5. — View Citation

O'Donnell DE, Lam M, Webb KA. Spirometric correlates of improvement in exercise performance after anticholinergic therapy in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999 Aug;160(2):542-9. — View Citation

O'Donnell DE, Sanii R, Younes M. Improvement in exercise endurance in patients with chronic airflow limitation using continuous positive airway pressure. Am Rev Respir Dis. 1988 Dec;138(6):1510-4. — View Citation

Rodrigues MK, Oliveira MF, Soares A, Treptow E, Neder JA. Additive effects of non-invasive ventilation to hyperoxia on cerebral oxygenation in COPD patients with exercise-related O2 desaturation. Clin Physiol Funct Imaging. 2013 Jul;33(4):274-81. doi: 10.1111/cpf.12024. Epub 2013 Jan 21. — View Citation

van 't Hul A, Gosselink R, Hollander P, Postmus P, Kwakkel G. Acute effects of inspiratory pressure support during exercise in patients with COPD. Eur Respir J. 2004 Jan;23(1):34-40. — View Citation

Vogiatzis I, Zakynthinos S. Factors limiting exercise tolerance in chronic lung diseases. Compr Physiol. 2012 Jul;2(3):1779-817. doi: 10.1002/cphy.c110015. Review. — View Citation

Wysocki M, Meshaka P, Richard JC, Similowski T. Proportional-assist ventilation compared with pressure-support ventilation during exercise in volunteers with external thoracic restriction. Crit Care Med. 2004 Feb;32(2):409-14. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Exercise tolerance (total exercise time) The primary outcome is exercise tolerance (total exercise time) during continuous and interval exercise. 12 months
Secondary Symptoms Breathlessness (assessed by Borg 1-10 scale) 12 months
Secondary Dynamic hyperinflation Inspiratory capacity (Litres) 12 months
See also
  Status Clinical Trial Phase
Completed NCT05102305 - A Multi-center,Prospective, OS to Evaluate the Effectiveness of 'NAC' Nebulizer Therapy in COPD (NEWEST)
Completed NCT01867762 - An Effectiveness and Safety Study of Inhaled JNJ 49095397 (RV568) in Patients With Moderate to Severe Chronic Obstructive Pulmonary Disease Phase 2
Recruiting NCT05562037 - Stepped Care vs Center-based Cardiopulmonary Rehabilitation for Older Frail Adults Living in Rural MA N/A
Terminated NCT04921332 - Bright Light Therapy for Depression Symptoms in Adults With Cystic Fibrosis (CF) and COPD N/A
Completed NCT03089515 - Small Airway Chronic Obstructive Disease Syndrome Following Exposure to WTC Dust N/A
Completed NCT02787863 - Clinical and Immunological Efficiency of Bacterial Vaccines at Adult Patients With Bronchopulmonary Pathology Phase 4
Recruiting NCT05552833 - Pulmonary Adaptive Responses to HIIT in COPD N/A
Recruiting NCT05835492 - A Pragmatic Real-world Multicentre Observational Research Study to Explore the Clinical and Health Economic Impact of myCOPD
Recruiting NCT05631132 - May Noninvasive Mechanical Ventilation (NIV) and/or Continuous Positive Airway Pressure (CPAP) Increase the Bronchoalveolar Lavage (BAL) Salvage in Patients With Pulmonary Diseases? N/A
Completed NCT03244137 - Effects of Pulmonary Rehabilitation on Cognitive Function in Patients With Severe to Very Severe Chronic Obstructive Pulmonary Disease
Not yet recruiting NCT03282526 - Volume Parameters vs Flow Parameters in Assessment of Reversibility in Chronic Obstructive Pulmonary Disease N/A
Completed NCT02546700 - A Study to Evaluate Safety and Efficacy of Lebrikizumab in Participants With Chronic Obstructive Pulmonary Disease (COPD) Phase 2
Withdrawn NCT04446637 - Acute Bronchodilator Effects of Ipratropium/Levosalbutamol 20/50 mcg Fixed Dose Combination vs Salbutamol 100 mcg Inhaler Plus Ipratropium 20 mcg Inhalation Aerosol Free Combination in Patients With Stable COPD Phase 3
Completed NCT04535986 - A Phase 3 Clinical Trial to Evaluate the Safety and Efficacy of Ensifentrine in Patients With COPD Phase 3
Recruiting NCT05865184 - Evaluation of Home-based Sensor System to Detect Health Decompensation in Elderly Patients With History of CHF or COPD
Completed NCT03256695 - Evaluate the Relationship Between Use of Albuterol Multidose Dry Powder Inhaler With an eModule (eMDPI) and Exacerbations in Participants With Chronic Obstructive Pulmonary Disease (COPD) Phase 3
Completed NCT03295474 - Telemonitoring in Pulmonary Rehabilitation: Feasibility and Acceptability of a Remote Pulse Oxymetry System.
Withdrawn NCT04042168 - Implications of Appropriate Use of Inhalers in Chronic Obstructive Pulmonary Disease (COPD) Phase 4
Completed NCT03414541 - Safety And Efficacy Study Of Orally Administered DS102 In Patients With Chronic Obstructive Pulmonary Disease Phase 2
Completed NCT02552160 - DETECT-Register DocumEnTation and Evaluation of a COPD Combination Therapy