Clinical Trials Logo

Clinical Trial Summary

Patients with severe respiratory diseases such as chronic obstructive pulmonary disease (COPD) or obesity-hypoventilation syndrome (OHS) can benefit from having non-invasive ventilation (NIV). NIV consists of a machine (ventilator) that is blowing air inside a patient's airway through a mask. NIV provides patients with a bigger breath. Bigger breaths help patients to have a more oxygen and less waste gas (or carbon dioxide) in their body.

These changes can improve outcomes and quality of life. In order to provide appropriate ventilation for each patient, the ventilator can generate different types of blowing:

- Continuous positive airway pressure (CPAP) which delivers a constant flow of air through the mask

- Pressure support ventilation (PSV) which delivers a constant flow of air through the mask and, on top of that, delivers more flow when the patient begins to inhale

- Volume targeted ventilation which delivers a flow of air through the mask that is adjusted breath by breath in order to achieve a preset volume.

These different type of blowing have consequences on patient comfort as well as on the improvement of their ventilation.

To assess the improvement of the ventilation, currently blood tests are used, however, these reflect overall output and may miss more subtle changes in breathing that could affect how patients feel.

Electrical impedance tomography (EIT) is a new technology that involves wearing a belt of sensors around the chest that provides information on how well the lungs are being filled with air by the ventilator. It allows a non-invasive assessment of the effect of NIV on lung ventilation in real-time.

The investigators hope to use the EIT technology to assess in real-time patients lung ventilation when they are using the NIV. The investigators hope that EIT will provide information on which type of blowing is more effective and more comfortable than the others.


Clinical Trial Description

Chronic lung disease can sometimes progress to the extent that patients can no longer clear the waste gas from their blood. Treatment can be offered with a mask and machine (ventilator) that helps people breathe and aims to improve their lung condition. It is common for people's lungs to be affected variably, i.e. left more than right or top of lung more than bases of lungs. The way in which the ventilator is set may affect how well the machine deals with these differences. If the lung is better ventilator patients may find the machine more comfortable and it may be more effective.

Electrical impedance tomography (EIT) is a new technology that involves wearing a belt of sensors around the chest that provides information on how well the lungs are being filled with air by the ventilator. It allows the assessment of these differences, which previously required the use of invasive equipment to obtain.

Optimising ventilator settings in the administration of non-invasive ventilation (NIV) can be improved with the addition of individual physiological data. This approach is limited due to the invasive techniques required to obtain this information, often leading to less ideal NIV settings promoting patient-ventilator asynchrony. It has been recently demonstrated by our group that all patients established on domiciliary NIV have a degree of patient-ventilator asynchrony and that the commonest type of asynchrony are triggering issues. Triggering asynchrony is promoted by mismatch between a patient's intrinsic positive end-expiratory pressure (iPEEP) and applied expiratory positive airway pressure (EPAP) with these ineffective efforts contributing to an increased work of breathing and patient discomfort. Previous strategies used to optimise patient triggering have involved the placement of oesophageal catheters in order to measure neural respiratory drive (NRD) to the diaphragm by electromyography (EMG) but again this process is invasive and often poorly tolerated. Electrical Impedance Tomography (EIT) is a non-invasive, bedside monitoring technique that provides semi-continuous, real-time information about the regional distribution of the changes in electrical resistivity of the lung tissue due to variations in ventilation in relation to a reference state.

Information is gained by repeatedly injecting small alternating electric currents (usually 5 mA) at high frequency of 50 - 80 kHz through a system of skin electrodes (usually 16) applied circumferentially around the thorax in a single plane between the 4th and 6th intercostal space. While an adjacent pair of electrodes 'injects' the current ('adjacent drive configuration'), all the remaining adjacent passive electrode pairs measure the differences in electric potential. A resistivity (impedance) image is reconstructed from this data by a mathematical algorithm using a two dimensional model and a simplified shape to represent the thoracic cross-section.

The resulting image possesses a high temporal and functional resolution making it possible to monitor dynamic physiological phenomena (e.g. delay in regional inflation or recruitment) on a breath by breath basis. It is important to realize that the EIT images are based on image reconstruction techniques that require at least one measurement on a well-defined reference state. All quantitative data are related to this reference and can only indirectly quantify (relative) changes in local lung impedance (but not absolute).

EIT can be used in mechanically ventilated patients to assess recruitment and to optimise ventilator settings to reduce risk of iatrogenic ventilator associated lung injury.

In the supine posture obese patients can generate significant levels of iPEEP that contribute to increased levels of neural respiratory drive compared with the upright posture. There has been much debate regarding the optimal ventilator strategy in patients with obesity related respiratory failure, with uncontrolled trial data to support simple continuous positive airway pressure, pressure support (PSV) NIV and volume targeted (VT) NIV. There has been no robust evidence to suggest superiority of a single mode but post hoc data suggests superior control of sleep disordered breathing in patients in pressure controlled mode. It is unclear whether the extended inspiratory time of pressure controlled mode is allowing superior gas exchange by maintaining airway distension and preventing regional collapse.

In COPD, patients' response to treatment can be influenced by disease heterogeneity with some patients showing even distribution of lung damage and others marked differences throughout the lungs. This variation can lead to significant differences in the lung mechanics in different regions with optimal NIV settings for some regions having potentially deleterious effects on neighbouring zones. It has been shown that control of hypoventilation and improved blood gas exchange is essential in order to improve outcomes with NIV in COPD but is less clear if pressure control ventilation as advocated by Windisch and colleagues is required in order to achieve this effect. Inappropriate settings of NIV can also lead to dynamic distension that results in a decrease of tidal volume and an increase in patient discomfort. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02765360
Study type Interventional
Source Guy's and St Thomas' NHS Foundation Trust
Contact
Status Completed
Phase N/A
Start date May 2016
Completion date April 30, 2017

See also
  Status Clinical Trial Phase
Enrolling by invitation NCT06000696 - Healthy at Home Pilot
Active, not recruiting NCT03927820 - A Pharmacist-Led Intervention to Increase Inhaler Access and Reduce Hospital Readmissions (PILLAR) N/A
Completed NCT04043728 - Addressing Psychological Risk Factors Underlying Smoking Persistence in COPD Patients: The Fresh Start Study N/A
Completed NCT04105075 - COPD in Obese Patients
Recruiting NCT05825261 - Exploring Novel Biomarkers for Emphysema Detection
Active, not recruiting NCT04075331 - Mepolizumab for COPD Hospital Eosinophilic Admissions Pragmatic Trial Phase 2/Phase 3
Terminated NCT03640260 - Respiratory Regulation With Biofeedback in COPD N/A
Recruiting NCT04872309 - MUlti-nuclear MR Imaging Investigation of Respiratory Disease-associated CHanges in Lung Physiology
Recruiting NCT05145894 - Differentiation of Asthma/COPD Exacerbation and Stable State Using Automated Lung Sound Analysis With LungPass Device
Withdrawn NCT04210050 - Sleep Ventilation for Patients With Advanced Hypercapnic COPD N/A
Terminated NCT03284203 - Feasibility of At-Home Handheld Spirometry N/A
Recruiting NCT06110403 - Impact of Long-acting Bronchodilator- -Corticoid Inhaled Therapy on Ventilation, Lung Function and Breathlessness Phase 1/Phase 2
Active, not recruiting NCT06040424 - Comparison of Ipratropium / Levosalbutamol Fixed Dose Combination and Ipratropium and Levosalbutamol Free Dose Combination in pMDI Form in Stable Chronic Obstructive Pulmonary Disease (COPD) Patients Phase 3
Recruiting NCT05865184 - Evaluation of Home-based Sensor System to Detect Health Decompensation in Elderly Patients With History of CHF or COPD
Recruiting NCT04868357 - Hypnosis for the Management of Anxiety and Breathlessness During a Pulmonary Rehabilitation Program N/A
Completed NCT01892566 - Using Mobile Health to Respond Early to Acute Exacerbations of COPD in HIV N/A
Completed NCT04119856 - Outgoing Lung Team - a Cross-sectorial Intervention in Patients With COPD N/A
Completed NCT04485741 - Strados System at Center of Excellence
Completed NCT03626519 - Effects of Menthol on Dyspnoea in COPD Patients N/A
Recruiting NCT04860375 - Multidisciplinary Management of Severe COPD N/A