Colon Cancer Stage III Clinical Trial
— ATTRACTOfficial title:
ATTRACT - ArTificial inTelligence-based RAdiogenomics in Colon Tumors
NCT number | NCT06108310 |
Other study ID # | IG24974 |
Secondary ID | |
Status | Recruiting |
Phase | |
First received | |
Last updated | |
Start date | January 2, 2021 |
Est. completion date | December 31, 2025 |
The goal of this clinical trial is to develop an artificial intelligence-based model to assess radiogenomics signature of colon tumor in patients with stage II-III colon cancer. The main question it aims to answer is: • Can artificial intelligence-based algorithm of radiomics features combined with clinical factors, biochemical biomarkers, and genomic data recognise tumor behaviour, aggressiveness, and prognosis, identifying a radiogenomics signature of the tumor? Participants will - undergo a preoperative contrast-enhanced CT examination; - undergo surgical excision of colon cancer - undergo adjuvant therapy if deemed necessary based on current guidelines
Status | Recruiting |
Enrollment | 500 |
Est. completion date | December 31, 2025 |
Est. primary completion date | December 31, 2024 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - patients with pathologically proven stage II and stage III colon cancer; - availability of a CT scan with portal-venous phase at the time of diagnosis; - availability of immunohistochemical panel Exclusion Criteria: - patients with no CT images prior to surgical resection; - patients with CT scans characterized by motion artifacts preventing radiomics analysis |
Country | Name | City | State |
---|---|---|---|
Italy | AOU Sant'Andrea | Roma | RM |
Lead Sponsor | Collaborator |
---|---|
University of Roma La Sapienza | Associazione Italiana per la Ricerca sul Cancro |
Italy,
Azuaje F. Artificial intelligence for precision oncology: beyond patient stratification. NPJ Precis Oncol. 2019 Feb 25;3:6. doi: 10.1038/s41698-019-0078-1. eCollection 2019. — View Citation
Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, Bartlett BR, Wang H, Luber B, Alani RM, Antonarakis ES, Azad NS, Bardelli A, Brem H, Cameron JL, Lee CC, Fecher LA, Gallia GL, Gibbs P, Le D, Giuntoli RL, Goggins M, Hogarty MD, Holdhoff M, Hong SM, Jiao Y, Juhl HH, Kim JJ, Siravegna G, Laheru DA, Lauricella C, Lim M, Lipson EJ, Marie SK, Netto GJ, Oliner KS, Olivi A, Olsson L, Riggins GJ, Sartore-Bianchi A, Schmidt K, Shih lM, Oba-Shinjo SM, Siena S, Theodorescu D, Tie J, Harkins TT, Veronese S, Wang TL, Weingart JD, Wolfgang CL, Wood LD, Xing D, Hruban RH, Wu J, Allen PJ, Schmidt CM, Choti MA, Velculescu VE, Kinzler KW, Vogelstein B, Papadopoulos N, Diaz LA Jr. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014 Feb 19;6(224):224ra24. doi: 10.1126/scitranslmed.3007094. — View Citation
Bibault JE, Giraud P, Housset M, Durdux C, Taieb J, Berger A, Coriat R, Chaussade S, Dousset B, Nordlinger B, Burgun A. Deep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Sci Rep. 2018 Aug 22;8(1):12611. doi: 10.1038/s41598-018-30657-6. Erratum In: Sci Rep. 2018 Nov 12;8(1):16914. — View Citation
Bosman FT. Tumor Heterogeneity: Will It Change What Pathologists Do. Pathobiology. 2018;85(1-2):18-22. doi: 10.1159/000469664. Epub 2017 May 9. — View Citation
Caruso D, Zerunian M, Ciolina M, de Santis D, Rengo M, Soomro MH, Giunta G, Conforto S, Schmid M, Neri E, Laghi A. Haralick's texture features for the prediction of response to therapy in colorectal cancer: a preliminary study. Radiol Med. 2018 Mar;123(3):161-167. doi: 10.1007/s11547-017-0833-8. Epub 2017 Nov 8. — View Citation
Chakraborty S, Hosen MI, Ahmed M, Shekhar HU. Onco-Multi-OMICS Approach: A New Frontier in Cancer Research. Biomed Res Int. 2018 Oct 3;2018:9836256. doi: 10.1155/2018/9836256. eCollection 2018. — View Citation
Chen S, Zhang N, Shao J, Wang T, Wang X. Multi-omics Perspective on the Tumor Microenvironment based on PD-L1 and CD8 T-Cell Infiltration in Urothelial Cancer. J Cancer. 2019 Jan 1;10(3):697-707. doi: 10.7150/jca.28494. eCollection 2019. — View Citation
Cozzi L, Comito T, Fogliata A, Franzese C, Franceschini D, Bonifacio C, Tozzi A, Di Brina L, Clerici E, Tomatis S, Reggiori G, Lobefalo F, Stravato A, Mancosu P, Zerbi A, Sollini M, Kirienko M, Chiti A, Scorsetti M. Computed tomography based radiomic signature as predictive of survival and local control after stereotactic body radiation therapy in pancreatic carcinoma. PLoS One. 2019 Jan 18;14(1):e0210758. doi: 10.1371/journal.pone.0210758. eCollection 2019. — View Citation
Diamant A, Chatterjee A, Vallieres M, Shenouda G, Seuntjens J. Deep learning in head & neck cancer outcome prediction. Sci Rep. 2019 Feb 26;9(1):2764. doi: 10.1038/s41598-019-39206-1. — View Citation
Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer. 2017 Feb;17(2):79-92. doi: 10.1038/nrc.2016.126. Epub 2017 Jan 4. Erratum In: Nat Rev Cancer. 2017 Mar 23;17 (4):268. — View Citation
Dunne PD, O'Reilly PG, Coleman HG, Gray RT, Longley DB, Johnston PG, Salto-Tellez M, Lawler M, McArt DG. Stratified analysis reveals chemokine-like factor (CKLF) as a potential prognostic marker in the MSI-immune consensus molecular subtype CMS1 of colorectal cancer. Oncotarget. 2016 Jun 14;7(24):36632-36644. doi: 10.18632/oncotarget.9126. — View Citation
Ferrari R, Mancini-Terracciano C, Voena C, Rengo M, Zerunian M, Ciardiello A, Grasso S, Mare' V, Paramatti R, Russomando A, Santacesaria R, Satta A, Solfaroli Camillocci E, Faccini R, Laghi A. MR-based artificial intelligence model to assess response to therapy in locally advanced rectal cancer. Eur J Radiol. 2019 Sep;118:1-9. doi: 10.1016/j.ejrad.2019.06.013. Epub 2019 Jun 22. — View Citation
Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2016 Feb;278(2):563-77. doi: 10.1148/radiol.2015151169. Epub 2015 Nov 18. — View Citation
Glynne-Jones R, Wyrwicz L, Tiret E, Brown G, Rodel C, Cervantes A, Arnold D; ESMO Guidelines Committee. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017 Jul 1;28(suppl_4):iv22-iv40. doi: 10.1093/annonc/mdx224. No abstract available. Erratum In: Ann Oncol. 2018 Oct 1;29(Suppl 4):iv263. — View Citation
Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, Bot BM, Morris JS, Simon IM, Gerster S, Fessler E, De Sousa E Melo F, Missiaglia E, Ramay H, Barras D, Homicsko K, Maru D, Manyam GC, Broom B, Boige V, Perez-Villamil B, Laderas T, Salazar R, Gray JW, Hanahan D, Tabernero J, Bernards R, Friend SH, Laurent-Puig P, Medema JP, Sadanandam A, Wessels L, Delorenzi M, Kopetz S, Vermeulen L, Tejpar S. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015 Nov;21(11):1350-6. doi: 10.1038/nm.3967. Epub 2015 Oct 12. — View Citation
Hondermarck, H., Cancer Omics: A Special Issue to Highlight Where We Are Heading. Proteomics, 2018. 18(24): p. e180038
Horvat N, Bates DDB, Petkovska I. Novel imaging techniques of rectal cancer: what do radiomics and radiogenomics have to offer? A literature review. Abdom Radiol (NY). 2019 Nov;44(11):3764-3774. doi: 10.1007/s00261-019-02042-y. — View Citation
Horvat N, Veeraraghavan H, Khan M, Blazic I, Zheng J, Capanu M, Sala E, Garcia-Aguilar J, Gollub MJ, Petkovska I. MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy. Radiology. 2018 Jun;287(3):833-843. doi: 10.1148/radiol.2018172300. Epub 2018 Mar 7. — View Citation
Huang L, Brunell D, Stephan C, Mancuso J, Yu X, He B, Thompson TC, Zinner R, Kim J, Davies P, Wong STC. Driver network as a biomarker: systematic integration and network modeling of multi-omics data to derive driver signaling pathways for drug combination prediction. Bioinformatics. 2019 Oct 1;35(19):3709-3717. doi: 10.1093/bioinformatics/btz109. — View Citation
Kantarjian H, Yu PP. Artificial Intelligence, Big Data, and Cancer. JAMA Oncol. 2015 Aug;1(5):573-4. doi: 10.1001/jamaoncol.2015.1203. No abstract available. — View Citation
Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017 Dec;14(12):749-762. doi: 10.1038/nrclinonc.2017.141. Epub 2017 Oct 4. — View Citation
Lenchik L, Heacock L, Weaver AA, Boutin RD, Cook TS, Itri J, Filippi CG, Gullapalli RP, Lee J, Zagurovskaya M, Retson T, Godwin K, Nicholson J, Narayana PA. Automated Segmentation of Tissues Using CT and MRI: A Systematic Review. Acad Radiol. 2019 Dec;26(12):1695-1706. doi: 10.1016/j.acra.2019.07.006. Epub 2019 Aug 10. — View Citation
Li S, Wang K, Hou Z, Yang J, Ren W, Gao S, Meng F, Wu P, Liu B, Liu J, Yan J. Use of Radiomics Combined With Machine Learning Method in the Recurrence Patterns After Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma: A Preliminary Study. Front Oncol. 2018 Dec 21;8:648. doi: 10.3389/fonc.2018.00648. eCollection 2018. — View Citation
Liang C, Huang Y, He L, Chen X, Ma Z, Dong D, Tian J, Liang C, Liu Z. The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer. Oncotarget. 2016 May 24;7(21):31401-12. doi: 10.18632/oncotarget.8919. — View Citation
Lo CM, Iqbal U, Li YJ. Cancer quantification from data mining to artificial intelligence. Comput Methods Programs Biomed. 2017 Jul;145:A1. doi: 10.1016/S0169-2607(17)30594-1. No abstract available. — View Citation
Long NP, Jung KH, Anh NH, Yan HH, Nghi TD, Park S, Yoon SJ, Min JE, Kim HM, Lim JH, Kim JM, Lim J, Lee S, Hong SS, Kwon SW. An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer. Cancers (Basel). 2019 Jan 29;11(2):155. doi: 10.3390/cancers11020155. — View Citation
Mayo RC, Leung J. Artificial intelligence and deep learning - Radiology's next frontier? Clin Imaging. 2018 May-Jun;49:87-88. doi: 10.1016/j.clinimag.2017.11.007. Epub 2017 Nov 16. — View Citation
Merker JD, Oxnard GR, Compton C, Diehn M, Hurley P, Lazar AJ, Lindeman N, Lockwood CM, Rai AJ, Schilsky RL, Tsimberidou AM, Vasalos P, Billman BL, Oliver TK, Bruinooge SS, Hayes DF, Turner NC. Circulating Tumor DNA Analysis in Patients With Cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J Clin Oncol. 2018 Jun 1;36(16):1631-1641. doi: 10.1200/JCO.2017.76.8671. Epub 2018 Mar 5. — View Citation
Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, Stein KD, Alteri R, Jemal A. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016 Jul;66(4):271-89. doi: 10.3322/caac.21349. Epub 2016 Jun 2. — View Citation
Neri E, Del Re M, Paiar F, Erba P, Cocuzza P, Regge D, Danesi R. Radiomics and liquid biopsy in oncology: the holons of systems medicine. Insights Imaging. 2018 Dec;9(6):915-924. doi: 10.1007/s13244-018-0657-7. Epub 2018 Nov 14. — View Citation
Park BW, Kim JK, Heo C, Park KJ. Reliability of CT radiomic features reflecting tumour heterogeneity according to image quality and image processing parameters. Sci Rep. 2020 Mar 2;10(1):3852. doi: 10.1038/s41598-020-60868-9. — View Citation
Pinker K, Chin J, Melsaether AN, Morris EA, Moy L. Precision Medicine and Radiogenomics in Breast Cancer: New Approaches toward Diagnosis and Treatment. Radiology. 2018 Jun;287(3):732-747. doi: 10.1148/radiol.2018172171. — View Citation
Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, Bellomi M. Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp. 2018 Nov 14;2(1):36. doi: 10.1186/s41747-018-0068-z. — View Citation
Roseweir AK, McMillan DC, Horgan PG, Edwards J. Colorectal cancer subtypes: Translation to routine clinical pathology. Cancer Treat Rev. 2017 Jun;57:1-7. doi: 10.1016/j.ctrv.2017.04.006. Epub 2017 May 4. — View Citation
Shen TL, Fu XL. [Application and prospect of artificial intelligence in cancer diagnosis and treatment]. Zhonghua Zhong Liu Za Zhi. 2018 Dec 23;40(12):881-884. doi: 10.3760/cma.j.issn.0253-3766.2018.12.001. Chinese. — View Citation
Soomro MH, Coppotelli M, Conforto S, Schmid M, Giunta G, Del Secco L, Neri E, Caruso D, Rengo M, Laghi A. Automated Segmentation of Colorectal Tumor in 3D MRI Using 3D Multiscale Densely Connected Convolutional Neural Network. J Healthc Eng. 2019 Jan 31;2019:1075434. doi: 10.1155/2019/1075434. eCollection 2019. — View Citation
Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, Verlingue L, Brandao D, Lancia A, Ammari S, Hollebecque A, Scoazec JY, Marabelle A, Massard C, Soria JC, Robert C, Paragios N, Deutsch E, Ferte C. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018 Sep;19(9):1180-1191. doi: 10.1016/S1470-2045(18)30413-3. Epub 2018 Aug 14. — View Citation
Thanki K, Nicholls ME, Gajjar A, Senagore AJ, Qiu S, Szabo C, Hellmich MR, Chao C. Consensus Molecular Subtypes of Colorectal Cancer and their Clinical Implications. Int Biol Biomed J. 2017 Summer;3(3):105-111. Epub 2017 Jun 13. — View Citation
Trinh A, Trumpi K, De Sousa E Melo F, Wang X, de Jong JH, Fessler E, Kuppen PJ, Reimers MS, Swets M, Koopman M, Nagtegaal ID, Jansen M, Hooijer GK, Offerhaus GJ, Kranenburg O, Punt CJ, Medema JP, Markowetz F, Vermeulen L. Practical and Robust Identification of Molecular Subtypes in Colorectal Cancer by Immunohistochemistry. Clin Cancer Res. 2017 Jan 15;23(2):387-398. doi: 10.1158/1078-0432.CCR-16-0680. Epub 2016 Jul 26. — View Citation
Wang W, Kandimalla R, Huang H, Zhu L, Li Y, Gao F, Goel A, Wang X. Molecular subtyping of colorectal cancer: Recent progress, new challenges and emerging opportunities. Semin Cancer Biol. 2019 Apr;55:37-52. doi: 10.1016/j.semcancer.2018.05.002. Epub 2018 May 18. — View Citation
* Note: There are 40 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Identification of radiogenomics signature (ATTRACT AI-model) of stage II-III colon tumors | From January 2021 to December 2023 | ||
Secondary | Correlation of radiogenomics signature (ATTRACT AI-model) of colon cancer with clinical outcomes (DFS and RFS) | From January 2024 to December 2025 |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04907643 -
Virtual Reality for GI Cancer Pain to Improve Patient Reported Outcomes
|
N/A | |
Completed |
NCT00309530 -
Randomized Study on Adjuvant Chemotherapy and Adjuvant Chemo-Immunotherapy in Colon Carcinoma Dukes C
|
Phase 3 | |
Completed |
NCT04342676 -
Lymph Node Ratio and Kras Mutation in R Colon Cancer
|
Phase 3 | |
Enrolling by invitation |
NCT05179889 -
Adjuvant mFOLFIRINOX for High-risk Stage III Colon Cancer
|
Phase 2/Phase 3 | |
Withdrawn |
NCT05433402 -
Repurposing the Antipsychotic Drug Chlorpromazine as Adjuvant Therapeutic Agent for Resected Stage III Colon Cancer
|
Phase 1/Phase 2 | |
Withdrawn |
NCT05310565 -
The Effects of Chiropractic in Adults With Colon Cancer
|
N/A | |
Not yet recruiting |
NCT04488159 -
Immunoscore as Decision Guidance for Adjuvant Chemotherapy in Colon Cancer
|
Phase 3 | |
Recruiting |
NCT05194878 -
Neoadjuvant FOLFOXIRI Versus Immediate Surgery for Stage II and III Colon Cancers
|
Phase 3 |