View clinical trials related to Citrullinemia.
Filter by:Inborn errors of metabolism (IEM) are not have specific clinical signs, they masquerade as other diseases, and are difficult to diagnose using only clinical manifestations or routine laboratory tests. IEM most commonly manifest in early infancy and childhood. Despite the fact that most IEM are rare in the population, they occupy one of the first places in the structure of childhood pathology, early infant mortality and disability. IEM often remains undiagnosed, while timely diagnosis and timely treatment started can prevent severe systemic damage leading to death and disability. The appointment of a special treatment (diet therapy, cofactors, enzyme replacement therapy) prevents or significantly inhibits the development of the pathological process, especially if the diagnosis is made in the early stages of the disease. To start pathogenetic treatment as early as possible, it is necessary to diagnose IEM as accurately and as early as possible. Among the diseases included in mass screening programs IEM are especially important due to the development of disability and early mortality in the absence of timely diagnosis and treatment, as well as a high risk of recurrence in burdened families. In this connection, the main goals of mass screening - the prevention of disability in children and the reduction of early infant mortality - dictate the need to introduce modern technologies for preclinical diagnosis of IEM. Based on the results of the study, it is planned to scientifically substantiate the need for the introduction of selective screening of children for hereditary metabolic diseases using the technology of tandem mass spectrometry in the Republic of Kazakhstan for timely diagnosis, therapy of IEM and prevention of disability. The introduction of a selective newborn screening program for IEM should always be preceded by a study aimed at studying the prevalence of the disease in a certain region, determining regional reference values of the studied metabolites. Local incidence and outcome data can be used to persuade health officials to prioritize screening in health care spending. The main scientific question and hypothesis of the project is whether it is necessary to introduce tandem mass spectrometry technology in the neonatal screening program for IEM.
Newborn screening (NBS) is a global initiative of systematic testing at birth to identify babies with pre-defined severe but treatable conditions. With a simple blood test, rare genetic conditions can be easily detected, and the early start of transformative treatment will help avoid severe disabilities and increase the quality of life. Baby Detect Project is an innovative NBS program using a panel of target sequencing that aims to identify 126 treatable severe early onset genetic diseases at birth caused by 361 genes. The list of diseases has been established in close collaboration with the Paediatricians of the University Hospital in Liege. The investigators use dedicated dried blood spots collected between the first day and 28 days of life of babies, after a consent sign by parents.
This is a multi-site, retrospective chart review as well as a prospective study to evaluate histopathologic findings in liver samples from individuals with any UCD diagnosis. This study will be conducted at all Urea Cycle Disorders Consortium (UCDC) sites: Baylor College of Medicine in Houston, TX and Children's National Medical Center in Washington D.C.
This is a multi-center, cross-sectional study to assess risk for liver fibrosis and hepatic injury in individuals with urea cycle disorders (UCDs) using serum biomarkers, Fibroscan, and MRE. This study will be conducted at 5 sites of the Urea Cycle Disorders Consortium: Baylor College of Medicine in Houston, TX, Seattle Children's Hospital in Seattle, WA, Children's Hospital Colorado in Aurora, CO, Children's Hospital of Philadelphia in Philadelphia, PA, and Children's National Medical Center in Washington D.C.
determine the interest of the dosage of citrullinemia to monitor the bowel damage after allogeneic bone marrow transplantation in children.