Clinical Trials Logo

Chronobiology clinical trials

View clinical trials related to Chronobiology.

Filter by:
  • Recruiting  
  • Page 1

NCT ID: NCT04921215 Recruiting - Sleep Clinical Trials

Teen Sleep and Light Study

Start date: June 14, 2021
Phase: N/A
Study type: Interventional

Circadian clocks shift later (delay) with the progression of puberty; this shift contributes to late sleep onsets in older adolescents. Early school start times, however, force teenagers to awaken earlier than their spontaneous wake time and the opportunity for sleep shortens. Chronic circadian misalignment and sleep restriction are at their peak during late adolescence, and are associated with various negative outcomes. Morning bright light exposure from light boxes can shift rhythms earlier (phase advance) to facilitate earlier sleep onset, and reduce circadian misalignment and the associated risks. Studies of adults, however, indicate that restricted sleep and exposure to evening light due to late bedtimes make morning bright light less effective in producing advances. Pilot data collected from adolescents mimic this finding, but also suggest that staying awake late in normal household lighting and the subsequent sleep restriction before and during a 3-day morning bright light regimen, can shift the system in the wrong direction (phase delay). The overarching goal of this study is to examine the dose of sleep restriction and evening household light that prevents the desired phase advance to morning bright light in adolescents aged 14-17 years. Study 1 aims to construct a sleep restriction with normal household evening light dose-response curve to determine the point at which morning bright light begins to lose its effectiveness. The investigators hypothesize that the circadian system will advance with sufficient sleep, but with increasing sleep restriction/evening light, circadian rhythms will not shift or will delay despite the phase advancing morning bright light. Study 2 will test whether reducing evening light exposure by wearing sunglasses before bedtime during sleep restriction can facilitate phase advances. The main outcome measures to build the dose-response curve will be phase shifts of the central circadian clock marked by the dim light melatonin onset (DLMO) and total sleep time measured from actigraphy in the laboratory. Secondary outcomes include cognitive performance, sleepiness, and mood.

NCT ID: NCT04753190 Recruiting - Sleep Clinical Trials

Light Timing Study

ALT
Start date: August 22, 2022
Phase: N/A
Study type: Interventional

Chronic circadian misalignment and sleep restriction peak during late adolescence, and are associated with morning daytime sleepiness, poor academic performance, conduct problems, depressed mood, suicidal ideation, substance use, insulin resistance, and obesity. Bright light exposure from light boxes can shift rhythms earlier (phase advance) to facilitate earlier sleep onset and reduce morning circadian misalignment and the associated risks. To phase advance circadian rhythms, the investigators' PRCs showed that the ideal time to begin light exposure was slightly before wake-up time and light should be avoided around bedtime because this is when light produces maximum phase delay shifts. An unexpected finding from these results, however, was a second advancing region in the afternoon (~6 to 9 h after habitual wake-up time) suggesting that afternoon light may have more circadian phase advancing ability than traditionally thought. The overall goal of this mechanistic study is to follow-up on the unexpected PRC findings and test whether individually-timed afternoon light alone and in combination with morning bright light can shift circadian rhythms earlier in older adolescents. Four groups will be compared in a randomized parallel group design: afternoon bright light, morning bright light, morning + afternoon bright light, and a dim room light control. Adolescents will complete a 2-week protocol. After a baseline week with a stable sleep schedule, adolescents will live in the laboratory for 7 days. Sleep/dark and the time of bright light exposure will gradually shift earlier. Bright light (~5000 lux) will be timed individually based on his/her stable baseline sleep schedule. The first 3-h morning bright light exposure will begin 1 h before wake on the first morning. The first 3-h afternoon bright light exposure will begin 5 h after wake. The morning + afternoon exposures will begin at the same times, but each exposure will be 1.5 h so that a total of 3 h of bright light per day will be given to each group except the dim light control group. Phase shifts of the circadian clocks marked by the dim light melatonin onset (DLMO) is the main outcome. Investigators hypothesize that afternoon bright light will work synergistically with morning bright light to produce larger shifts than morning or afternoon bright light alone. These data could challenge the current understanding of how to use bright light to shift circadian rhythms earlier.