Clinical Trials Logo

Clinical Trial Summary

Diabetes kidney disease is a leading cause for end stage renal disease in the western world. To date no treatment that can reverse renal damage exists.

Chronic hypoxia is one of the major key insults affecting the diabetic kidney, and many of the new treatments under study focus on it's consequences, but no treatment can improve the hypoxia as both increased renal perfusion and decreased renal perfusion may be associated with it's worsening. Hyperbaric oxygen therapy (HBOT) can improve renal hypoxia by increasing partial pressure of dissolved (non-hemoglobin-bound) oxygen without affecting it's demand. HBOT also recruits tissue and peripheral progenitors and supplies the optimal environment crucial for their proliferation and for tissue repair. Hyperbaric oxygen treatment was known for years as an effective treatment for diabetic ulcers. Recent trials have shown great impact on brain lesions (in diabetic and non-diabetic patients) it is now the time to evaluate the effect of HBOT on the diabetic kidney.


Clinical Trial Description

Scientific background

Diabetic Kidney Disease (DKD):

The kidneys, which are an important target for diabetic induced damage, contribute a lot to this burden. Diabetic nephropathy (DN) is the most common cause of end-stage kidney disease worldwide, associated with increased morbidity and mortality in patients with diabetes.

The pathogenesis of DKD is relatively established, less progress however have been achieved in the effort to heal the diabetic kidney. Current therapies aimed to control blood glucose levels and blood pressure, and in particular, inhibition of the RAS in order to prevent the development of albuminuria and progression of DKD. Many new therapies emerging recently have offered some potential, but yet none of them had proven effect on the renal progression.

While TGF beta1, MAPK, HIF, VEGF and others have stand in the focus of trials, and drugs that control each of these mediators were offered as the drug that will "make the change" these mediators are probably not the key insult.

Oxygen and the kidney

The kidneys consist of only 1% of the body weight, but consume more than 10% of its total oxygen consumption. Eighty percent of the oxygen is being consumed by the Na/K ATPase in the proximal tubule.

For most organs tissue oxygen tension is determined by the balance between the blood flow and tissue oxygen consumption. However, the kidneys do not fall under such a simple calculation, because the kidney receives blood to regulate the blood volume and composition, not for their own benefit.

Increased renal blood flow increases the glomerular filtration rate, which in turn must increase the rate of sodium reabsorption, increasing tissue oxygen consumption. Inability to increase delivery without increasing the demand may cause chronic hypoxia. And indeed recent studies using DW MRI and BOLD MRI have demonstrated renal parenchymal hypoxia of CKD patients with or without diabetes.

Chronic hypoxia is one of the major key insults affecting the diabetic kidney as hyperglycemia and hyperfiltration triggers a vicious circle between increasing oxygen delivery and increasing oxygen consumption that leads to more need for oxygen supply. Pseudohypoxia also exists due to hyperglycemia induced mitochondrial oxygen consumption. Hypoxia/pseudohypoxia contributes to the induction of TGF Beta1, MAPK, which have important role in these pathological mechanisms.

Dissociation between demand and delivery can only be achieved by increasing oxygen delivery using hyperbaric oxygen therapy.

Hyperbaric oxygen therapy (HBOT)

Hyperbaric oxygen therapy (HBOT) includes the inhalation of 100% oxygen at pressures exceeding 1 atmosphere absolute (ATA) in order to enhance the amount of oxygen dissolved in the body tissues. During HBOT treatment, the arterial O2 tension typically exceeds 2000 mmHg, and levels of 200-400 mmHg occur in tissues.

As explained in detail by Efrati and Ben-Jacob, the diverse and powerful innate repair mechanisms activated by HBOT are associated both with the elevated level of dissolved oxygen and with the elevated pressure.

Hyperbaric oxygen therapy has been used for years for the treatment of ischemic diabetic ulcers. The sharp increase in tissue oxygenation enables angiogenesis and regeneration.

The same effects on brain ischemic lesions have been comprehensively studied, reviling improved perfusion and function after a course of HBO treatment.

Breathing oxygen under hyperbaric conditions elevates the capillary dissolved oxygen partial pressure significantly, which enables maximal passive diffusion of oxygen from the capillary to the mitochondria in all tissues.

Hyperbaric oxygen upregulate the expression of hypoxia-inducible-factor-1alpha (HIF-1a).probably via sensation of relative decrease from hyperoxia to normoxia, which could be sensed as relative hypoxia. HIF-1a increases the transcriptional activity of VEGF and its mRNA stability, improves vascular permeability, and eliminates edema.

HBOT and stem cells:

HBOT induces stem cells mobilization from bone marrow. The number of circulating stem cells increases up to 3-8 times compared to pretreatment level . Mobilized stem cells have higher concentrations of an array of regulatory proteins such as hypoxia inducible factors, which in the murine model exhibit improved neovascularization.

Studies have shown that stem cells mobilized by HBOT home in on tissues that have suffered damage and signal a need for regeneration, such as in the case of diabetic chronic ulcers or radiation related injuries.

HBOT and the kidneys:

The effect of HBO on the diabetic kidney has never been studied in human. However few studies have analyzed it's effect in animal diabetes model. Hyperbaric oxygen therapy (HBOT) suppresses biomarkers of cell stress and kidney injury in diabetic mice. And the treatment was found to be safe for renal function in another study with rats.

The aim of the present study is to evaluate the effect of HBO on a wide range of kidney functions and markers in patients with diabetic nephropathy.

Methods

The study is as a prospective, controlled trial conducted in the Segol hyperbaric institute and the research unit of Assaf-Harofeh Medical Center. All patients will sign a written informed consent. The protocol was approved by Assaf-Harofeh institutional review board.

After signing an informed consent form, patients are invited for baseline evaluation. Analysis of urine, blood, pulse wave analysis and fMRI will be done at baseline, after the follow up period and after the treatment period are done, after which patients will be randomly assign to either follow up or HBOT treatment. The analysis listed above will be repeated by the end of the first period, and then patients will be cross over to either HBOT or follow up. The following HBOT protocol will be practiced: 60 daily sessions, 5 days/week, 120 minutes each, 100% oxygen at 2ATA. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03376282
Study type Interventional
Source Assaf-Harofeh Medical Center
Contact Keren Doenyas, MD
Phone 972-544215487
Email kerendoenyas@gmail.com
Status Recruiting
Phase Phase 2
Start date January 2016
Completion date June 2019

See also
  Status Clinical Trial Phase
Recruiting NCT02565459 - MSC and Kidney Transplant Tolerance (Phase A) Phase 1
Recruiting NCT01876017 - Safety and Efficacy of BMMNC in Patients With Chronic Renal Failure Phase 1/Phase 2
Recruiting NCT02356419 - rESP Medication With a Single Intravenous Administration and Dose Escalation to Explore the Tolerability ,Safety and Pharmacokinetic Characteristics Phase 1
Withdrawn NCT03019159 - Assessment of a Follow-up With Tele-consulting for Patients With Renal Failure Under Peritoneal Dialysis N/A
Completed NCT02047006 - Dose-finding of Rivaroxaban in Hemodialysis Phase 4
Completed NCT01617824 - Rapid Effects Linagliptin on Monocyte Polarization and Endothelial Progenitor Cells in Type 2 Diabetes Phase 4
Completed NCT00828776 - Pharmacodynamics and Non-Clinical Inferiority of Heparin Sodium (Cristália) Compared With the Product Liquemine (Roche) in Chronic Renal Failure Phase 2/Phase 3
Completed NCT00597753 - Safety & Efficacy of Peginesatide for Maintenance Treatment of Anemia in Participants With Chronic Kidney Disease on Hemodialysis Phase 3
Terminated NCT00372489 - Extension Study to Evaluate Safety and Tolerability of Peginesatide for Long-Term Treatment of Anemia in Participants With CKD Phase 2
Completed NCT00379899 - ADVANCE: Study to Evaluate Cinacalcet Plus Low Dose Vitamin D on Vascular Calcification in Subjects With Chronic Kidney Disease Receiving Hemodialysis Phase 4
Completed NCT00228436 - Safety, PD & PK of Multiple Doses of Peginesatide for Anemia in Chronic Kidney Disease Patients Phase 2
Completed NCT03772171 - Estimate for Dietary Intakes and Hemodialysis Patients
Recruiting NCT02586402 - Safety & Efficacy of Pegolsihematide for Treatment of Anemia in Participants on Dialysis Phase 2
Completed NCT01879618 - Use Of Fragmin In Hemodialysis Phase 3
Not yet recruiting NCT01346215 - Study of Clinical Non-inferiority of Actparin® (Laboratorio Bergamo) Compared to Heparin Sodium (APP Pharmaceuticals), in Patients With Chronic Renal Failure Phase 3
Completed NCT01220843 - FGF23 Reduction : Efficacy of a New Phosphate Binder in CHronic Kidney Disease Phase 3
Completed NCT01111630 - Study of Erythropoietin (EPO) Administration Schedule Phase 4
Completed NCT00742716 - Safety Study of CTA018 Injection to Treat Stage 5 Chronic Kidney Disease Phase 2
Completed NCT00598273 - Safety & Efficacy of Peginesatide for the Treatment of Anemia in Participants With Chronic Renal Failure Not on Dialysis Phase 3
Completed NCT00597584 - Safety & Efficacy of Peginesatide for Maintenance Treatment of Anemia in Participants With Chronic Kidney Disease on Hemodialysis Phase 3