View clinical trials related to Chronic Myelomonocytic Leukemia.
Filter by:This phase II trial studies how well enasidenib and azacitidine work in treating patients with IDH2 gene mutation and acute myeloid leukemia that has come back (recurrent) or does not respond to treatment (refractory). Enasidenib and azacitidine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies the side effects and how well liposome-encapsulated daunorubicin-cytarabine and gemtuzumab ozogamicin work in treating patients with acute myeloid leukemia that has come back (relapsed) or that does not respond to treatment (refractory) or high risk myelodysplastic syndrome. Drugs used in chemotherapy, such as liposome-encapsulated daunorubicin-cytarabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Gemtuzumab ozogamicin is a monoclonal antibody, called gemtuzumab, linked to a toxic agent called calicheamicin. Gemtuzumab ozogamicin attached to CD33 positive cancer cells in a targeted way and delivers calicheamicin to kill them. Giving liposome-encapsulated daunorubicin-cytarabine and gemtuzumab ozogamicin together may be an effective treatment for relapsed or refractory acute myeloid leukemia or high risk myelodysplastic syndrome.
This phase II trial studies the effect of ascorbic acid and combination chemotherapy in treating patients with lymphoma that has come back (recurrent) or does not respond to therapy (refractory), clonal cytopenia of undetermined significance and chronic myelomonocytic leukemia (CMML). Ascorbic acid may make cancer cells more sensitive to chemotherapy. Drugs used in chemotherapy, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ascorbic acid and combination chemotherapy may kill more cancer cells.
This phase II trial studies the side effects and how well azacitidine and enasidenib work in treating patients with IDH2-mutant myelodysplastic syndrome. Azacitidine and enasidenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Chronic Myelomonocytic Leukemia (CMML) is the most frequent of myelodysplastic/myeloproliferative syndromes, as defined by the WHO classification of myeloid malignancies. The median age at diagnosis is around 70 years with a strong male predominance. CMML is a clonal disease of the bone marrow hematopoietic stem cell mainly characterized by persistent monocytosis (>1x109/L) and the presence of immature dysplastic granulocytes in the peripheral blood of CMML patients. Allogeneic stem cell transplantation (ASCT) remains the only curative option in CMML. However, CMML patients are rarely eligible for this kind of therapy, mainly due to their advanced age. The gold standard treatment of CMML thus remains hydroxyurea, which is usually initiated when the disease becomes proliferative, and demethylating agents, which could be efficient in the most aggressive forms of CMML. Nevertheless, the pathogenesis of CMML remains poorly understood and new therapies are urgently needed for patients in treatment failure. In recent years, a large numbers of gene mutations have been discovered in CMML, none of which are specific of this entity, as they can be encountered with different frequencies in other myeloid neoplasms. These mutated genes encode signaling molecules (NRAS, KRAS, CBL, JAK2, FLT3 and several members of the Notch pathway), epigenetic regulators (TET2, ASXL1, EZH2, IDH1, IDH2,.) and splicing factors (SF3B1, SRSF2, ZRSF2). Mutations in the transcription regulators RUNX1, NPM1 and TP53 have also been reported in CMML. However, the role of these mutations in leukemogenesis is still unclear. CMML is also characterized by defects in monocyte to macrophage differentiation. These defects in monocyte differentiation can be attributed to the presence of immature dysplastic granulocytes that secrete high levels of alpha-defensins HNP1-3 that antagonize the purinergic receptor P2RY6 in CMML patients. These CD14-/CD15+/CD24+ immature granulocytes that belong to the same clone than the leukemic monocytes seem to have immunosuppressive properties ressembling those of the myeloid-derived suppressor cells (MDCS) described in solid tumours. Whether these immature granulocytes contribute to autoimmune manifestations or immunoescape and progression of CMML is a conendrum and remains to be determined. In this context, the proposed project aims at identifying news insights into the pathophysiology of CMML through a better definition of the phenotype and function of monocytes and immature granulocytes that characterize this pathology.
This phase II clinical trial studies how well personalized natural killer (NK) cell therapy works after chemotherapy and umbilical cord blood transplant in treating patients with myelodysplastic syndrome, leukemia, lymphoma or multiple myeloma. This clinical trial will test cord blood (CB) selection for human leukocyte antigen (HLA)-C1/x recipients based on HLA-killer-cell immunoglobulin-like receptor (KIR) typing, and adoptive therapy with CB-derived NK cells for HLA-C2/C2 patients. Natural killer cells may kill tumor cells that remain in the body after chemotherapy treatment and lessen the risk of graft versus host disease after cord blood transplant.
This research study is studying identification of de novo Fanconi anemia in younger patients with newly diagnosed acute myeloid leukemia. Studying samples of tissue from patients with cancer in the laboratory may help doctors identify and learn more about biomarkers related to Fanconi anemia in patients with acute myeloid leukemia.
The purpose of this study is to assess the response rate at 6 months in Myelodysplastic Syndrome (MDS) patients, Chronic Myelomonocytic Leukaemia (CMML-2) patients, and Acute Myeloid Leukaemia (AML) patients with up to 30% bone marrow blasts, treated with low-dose decitabine who have previously failed therapy with 5-azacitidine.