Clinical Trials Logo

Chronic Myelomonocytic Leukemia clinical trials

View clinical trials related to Chronic Myelomonocytic Leukemia.

Filter by:

NCT ID: NCT02649764 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Prexasertib (LY2606368), Cytarabine, and Fludarabine in Patients With Relapsed or Refractory Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome

Start date: May 4, 2016
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and determine the best dose of prexasertib (LY2606368) when given together with cytarabine and fludarabine in patients with acute myeloid leukemia or high-risk myelodysplastic syndrome that has returned after a period of improvement or no longer responds to treatment. Prexasertib (LY2606368) may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine and fludarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving prexasertib (LY2606368) together with cytarabine and fludarabine may work better in treating patients with acute myeloid leukemia or myelodysplastic syndrome.

NCT ID: NCT02556931 Completed - Multiple Myeloma Clinical Trials

Shorter Course Tacro After NMA, Related Donor PBSCT With High-dose Posttransplant Cy for Hard-to-Engraft Malignancies

Start date: December 2015
Phase: Phase 2
Study type: Interventional

To see if it is possible to use short-duration tacrolimus after a peripheral blood stem cell transplant in certain malignancies that are considered difficult to engraft.

NCT ID: NCT02553941 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Ibrutinib and Azacitidine for Treatment of Higher Risk Myelodysplastic Syndrome

Start date: May 17, 2016
Phase: Phase 1
Study type: Interventional

This phase Ib trial studies the side effects and best dose of ibrutinib when given together with azacitidine in treating patients with myelodysplastic syndrome that is likely to occur or spread (higher risk) and who were previously treated or untreated and unfit for or refused intense therapy. Ibrutinib and azacitidine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT02397720 Completed - Clinical trials for Myelodysplastic Syndrome

Nivolumab and Azacitidine With or Without Ipilimumab in Treating Patients With Refractory/Relapsed or Newly Diagnosed Acute Myeloid Leukemia

Start date: April 7, 2015
Phase: Phase 2
Study type: Interventional

This phase II trial studies the side effects and best dose of nivolumab and azacitidine with or without ipilimumab when given together and to see how well they work in treating patients with acute myeloid leukemia that has not responded to previous treatment or has returned after a period of improvement or is newly diagnosed. Monoclonal antibodies, such as nivolumab and ipilimumab, may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nivolumab, azacitidine and ipilimumab may kill more cancer cells.

NCT ID: NCT02367456 Completed - Clinical trials for Acute Myeloid Leukemia

A Combination Study of PF-04449913 (Glasdegib) and Azacitidine In Untreated MDS, AML and CMML Patients

BRIGHT 1012
Start date: April 28, 2015
Phase: Phase 1
Study type: Interventional

This multi center open label Phase 1b study is designed to evaluate the safety, efficacy, pharmacokinetics (PK), and pharmacodynamics (PD) of glasdegib (PF-04449913) when combined with azacitidine in patients with previously untreated Higher Risk Myelodysplastic Syndrome (MDS), Acute Myeloid Leukemia (AML), or Chronic Myelomonocytic Leukemia (CMML). This clinical study includes two components: (a) a safety lead in cohort (LIC) and (b) an expansion phase with an AML cohort and an MDS cohort.

NCT ID: NCT02268253 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Tagraxofusp (SL-401) in Patients With CMML or MF

Start date: December 2014
Phase: Phase 2
Study type: Interventional

This multi-center, multi-arm trial is evaluating the safety and efficacy of tagraxofusp, a CD123-targeted therapy, in patients with either chronic myelomonocytic leukemia (CMML) or myelofibrosis (MF). There are two CMML cohorts, one enrolling patients with CMML (CMML-1 or CMML-2) who are refractory/resistant or intolerant to hypomethylating agents (HMA), hydroxyurea (HU), or intensive chemotherapy; and one enrolling treatment-naive patients with CMML (CMML-1 or CMML-2) with molecular features associated with poor prognosis. The MF cohort will enroll patients who are resistant/refractory or intolerant to approved JAK therapy (JAK1/JAK2 or JAK2).

NCT ID: NCT02210858 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Tipifarnib in Treating Patients With Chronic Myeloid Leukemia, Chronic Myelomonocytic Leukemia, or Undifferentiated Myeloproliferative Disorders

Start date: May 2000
Phase: Phase 1/Phase 2
Study type: Interventional

This phase 1-2 trial studies the side effects and how well tipifarnib works in treating patients with chronic myeloid leukemia, chronic myelomonocytic leukemia, or undifferentiated myeloproliferative disorders. Tipifarnib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT02190695 Completed - Clinical trials for Acute Myeloid Leukemia

Leukemia SPORE Phase II DAC Study for R/R and Elderly Acute AML and MDS

Start date: April 1, 2013
Phase: Phase 2
Study type: Interventional

The purpose of this study is to find a new way to treat Acute Myeloid Leukemia (AML), Myelodysplastic Syndrome (MDS) and Chronic Myelomonocytic Leukemia (CMML). All the drugs are used to treat AML and MDS but are not usually combined together. The investigators are looking at both the safety and Efficacy of each combination.

NCT ID: NCT02129101 Completed - Clinical trials for Myelodysplastic Syndrome

Azacitidine and Sonidegib or Decitabine in Treating Patients With Myeloid Malignancies

Start date: May 2014
Phase: Phase 1
Study type: Interventional

This phase I/Ib trial studies the side effects and best dose of azacitidine and sonidegib or decitabine and so see how well they work in treating patients with myeloid malignancies. The hedgehog (Hh) signaling pathway plays an important role in cellular growth, differentiation and repair. Inappropriate activation of Hh pathway signaling and uncontrolled cellular proliferation may be associated with mutations in the Hh-ligand cell surface receptor Smo. Sonidegib binds to the Hh cell surface receptor Smo, which may result in the suppression of the Hh signaling pathway and the inhibition of cancer cells. Azacitidine and decitabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving azacitidine together with sonidegib or decitabine may be a safe and successful treatment for patients with myeloid malignancies.

NCT ID: NCT01928537 Completed - Clinical trials for Myelodysplastic Syndromes

Efficacy and Safety of IV Rigosertib in MDS Patients With Excess Blasts Progressing After Azacitidine or Decitabine

Start date: August 2013
Phase: Phase 3
Study type: Interventional

This study will examine the effect intravenously administered rigosertib has on the relationship between bone marrow blasts response and overall survival in myelodysplastic syndromes (MDS) patients who have 5-30% bone marrow blasts and who progressed on or after treatment with azacitidine or decitabine.