View clinical trials related to Chronic Myeloid Leukemia.
Filter by:Blood and marrow stem cell transplant has improved the outcome for patients with high-risk hematologic malignancies. However, most patients do not have an appropriate HLA (immune type) matched sibling donor available and/or are unable to identify an acceptable unrelated HLA matched donor through the registries in a timely manner. Another option is haploidentical transplant using a partially matched family member donor. Although haploidentical transplant has proven curative in many patients, this procedure has been hindered by significant complications, primarily regimen-related toxicity including GVHD and infection due to delayed immune reconstitution. These can, in part, be due to certain white blood cells in the graft called T cells. GVHD happens when the donor T cells recognize the body tissues of the patient (the host) are different and attack these cells. Although too many T cells increase the possibility of GVHD, too few may cause the recipient's immune system to reconstitute slowly or the graft to fail to grow, leaving the patient at high-risk for significant infection. For these reasons, a primary focus for researchers is to engineer the graft to provide a T cell dose that will reduce the risk for GVHD, yet provide a sufficient number of cells to facilitate immune reconstitution and graft integrity. Building on prior institutional trials, this study will provide patients with a haploidentical graft engineered to specific T cell target values using the CliniMACS system. A reduced intensity, preparative regimen will be used in an effort to reduce regimen-related toxicity and mortality. Two groups of patients were enrolled on this study. One group included those with high-risk hematologic malignancies and the second group included participants with refractory hematologic malignancies or undergoing a second transplant. The primary aim of the study was to estimate the relapse rate in the one group of research participants with refractory hematologic malignancies or those undergoing second allogeneic transplant. Both groups will be followed and analyzed separately in regards to the secondary objectives. This study was closed to accrual on April 2006 as it met the specific safety stopping rules regarding occurrence of severe graft vs. host disease. Although this study is no longer open to accrual, the treated participants continue to be followed as directed by the protocol.
In this study participants with relapsed/refractory leukemia will be given MK-0457 in sequential cohorts and with varying treatment duration to determine the maximum tolerated dose (MTD) for MK-0457.
The primary purpose of this study is to estimate the major cytogenetic response rates of BMS-354825 and imatinib (800 mg/d) in subjects with chronic phase, Philadelphia chromosome positive, chronic myeloid leukemia (PH+ CML) with disease resistant to imatinib at a dose of 400-600 mg/d.
The purpose of this study is to see what effect an investigational drug (BMS-354825) has on subjects who are currently in the myeloid blast phase of chronic myeloid leukemia (CML) and who are either resistant to or intolerant of imatinib mesylate. Another purpose of the study is to see what side effects this drug may have on subjects.
The purpose of this study is assess the effects of the investigational drug dasatinib on participants who are in chronic phase Philadelphia chromosome chronic myeloid leukemia and who are either resistant to or intolerant of imatinib. Other purposes of the study are to identify any side effects the drug may produce and to study the level of dasatanib in the blood and assess the efficacy of dasatanib in the treatment of leukemia.
The purpose of this clinical research study is to learn if BMS-354825 will have activity as defined by hematologic responses in subjects with lymphoid blast phase chronic myeloid leukemia (CML) and Philadelphia chromosome positive acute lymphoblastic leukemia with primary or acquired resistance to imatinib mesylate.
This phase I trial is studying the side effects and best dose of temsirolimus when given with imatinib mesylate in treating patients with chronic myelogenous leukemia. Drugs used in chemotherapy, such as temsirolimus, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Imatinib mesylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving temsirolimus with imatinib mesylate may kill more cancer cells
This phase II trial studies pentostatin and donor lymphocyte infusion in preventing graft rejection in patients who have undergone donor stem cell transplant. Giving pentostatin and an infusion of the donor's T cells (donor lymphocyte infusion) after a donor stem cell transplant may stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving pentostatin before donor lymphocyte infusion may stop this from happening.
The goal is to compare the drug combinations clofarabine/idarubicin/ara-C, clofarabine/ara-C, and clofarabine/idarubicin in the treatment of patients with Acute Myeloid Leukemia, high-grade MDS, or myeloid blast phase of Chronic Myeloid Leukemia who have relapsed following their initial therapy.
Bone marrow transplantation (BMT) is a risky procedure. If doctors could reduce the complications, BMT would be safer to use for a wider range of conditions. The purposes of this study are - to prevent graft rejection by increasing the amount of immunosuppression and by giving some lymphocytes from the donor before transplant; - to prevent graft-versus-host disease (GVHD) by transplanting T-cell depleted stem cells; - to improve the immune effect against residual leukemia by the add-back of donor lymphocytes before transplant and six or more weeks after transplant. Beyond the standard transplant protocol, study participants will undergo additional procedures. First, along with total body irradiation, patients will receive two drugs (a high dose of cyclophosphamide and fludarabine) to suppress immunity and prevent rejection of the transplant. Second, four days before the transplant, patients will be given donor lymphocytes that have been irradiated to make them incapable of causing GVHD. On the day of the transplant, patients will receive an infusion of T-cell depleted bone marrow stem cells. Finally, patients will receive two doses of add-back donor T-cells (45 and 100 days post transplant) and the immunosuppressive drug cyclosporine starting on day 44 until about six months after transplant. Study participants must be between the ages of 10 and 56 and have a family member who is a suitable stem cell donor match.