View clinical trials related to Chronic Lymphocytic Leukemia.
Filter by:Patients will have immune cells collected and then expanded outside of the body. Patients will receive an infusion of a large number of expanded immune cells. There will be three dose levels studied. The goal of the study will be to determine the safety as well as potential efficacy of this treatment.
To determine what side effects and what clinical effects if any the administration of this investigational product, IDEC-152 (an antibody against CD23 which is an important protein on leukemia cells and certain cells in the body's immune system), has on the CLL patient population.
The goal of this clinical research study is to find the highest safe dose of Mylotarg that can be combined with chemotherapy in patients receiving allogeneic bone marrow transplantation. Researchers will study the effects of this treatment combination on patients with high-risk acute leukemia, chronic myelogenous leukemia, or myelodysplastic syndrome. Primary Objective: 1. To determine the safety and maximum tolerated dose of Mylotarg as part of a reduced-intensity preparative regimen patients undergoing related, mismatched-related or matched unrelated donor transplantation. Secondary Objectives: 1. To evaluate response rates, engraftment kinetics and degree of chimerism achievable with this strategy. 2. To evaluate the incidence and severity of GVHD in this population 3. To evaluate disease-free and overall survival and relapse rates.
The purpose of this study is to determine the side effects and antitumor response of patients with lymphoid malignancies to Deoxycoformycin (DCF)/Pentostatin.
The purposes of this study are to determine a maximum tolerated dose and to evaluate the safety and efficacy of CP-461 in patients with Chronic Lymphocytic Leukemia.
Chemotherapy can often cause anemia in patients with cancer. Anemia is a low number of red blood cells. The symptoms of anemia may include fatigue, dizziness, headache, chest pain, and shortness of breath. Erythropoietin is a hormone made by the kidneys that signals the bone marrow to produce more red blood cells. Recombinant human erythropoietin has been produced in the laboratory and has the same effect as the hormone produced by the body. Use of recombinant human erythropoietin allows the body to produce more red blood cells, possibly eliminating or decreasing your symptoms and the need for a red blood cell transfusion. Recombinant human erythropoietin is FDA approved to treat anemia in cancer patients receiving chemotherapy. This clinical study is investigating the effectiveness of darbepoetin alfa for the treatment of anemia in patients with non-myeloid malignancies who are receiving chemotherapy every three weeks. Darbepoetin alfa is a recombinant erythropoietic protein that stimulates the production of red blood cells. This medication has not been approved to treat cancer patients with anemia, however it has been approved by the FDA to treat chronic renal failure patients with anemia.
This non-randomized study will test the safety and effectiveness of Genasense in patients with CLL.
Cancers of the blood, sometimes referred to as hematologic malignancies, are disorders of bone marrow cells that lead to the failure of the normal function of bone marrow and the uncontrolled growth of cancerous cells in the bone marrow. These cancerous cells can spill over into the bloodstream and affect other organs causing widespread symptoms. The disease is life threatening because it blocks the normal function of the marrow, which is to produce red cells (preventing anemia), white cells (preventing infection), and platelets (preventing progression). Bone marrow transplants are a potential form of therapy for patients with hematologic malignancies. However, BMT is a complicated procedure and can be associated with dangerous side effects. In this study researchers are attempting to find ways to reduce the complications of BMT, so that it would be possible to use it more safely and can be offered more patients. In order to do this, researchers are developing new techniques to make BMT safer. It requires making small changes to the standard procedure, which may improve the outcome. The experimental procedures researchers are evaluating are: 1. <TAB>T-cell depleted peripheral blood progenitor cell (PBPC) transplantation 2. <TAB> Cyclosporine given immediately after the transplant 3. <TAB>Add-back of donor lymphocytes Patients undergoing these experimental techniques must be monitored closely to see if any benefit or harmful effects will occur. Information gathered from this study can be used to develop further research studies and potential new therapies for hematologic malignancies.
Allogeneic peripheral blood stem cell transplantation (PBSCT) is primarily limited by graft-versus-host disease (GVHD). In murine models, we have demonstrated that donor CD4+ T cells of Th1 cytokine phenotype (defined by their secretion of IL-2 and IFN-gamma) mediate GVHD. In contrast, donor CD4+ T cells of Th2 phenotype (defined by their secretion of IL-4, IL-5, and IL-10) do not generate GVHD, and abrogate Th-1-mediated GVHD. Importantly, we have demonstrated that enrichment of murine allografts with Th2 cells reduces GVHD without impairing the ability of donor T cells to prevent graft rejection. These studies indicate that the administration of Th2 cells after allogeneic transplantation represents a strategy for achieving alloengraftment with reduced GVHD. In addition to GVHD, allogeneic PBSCT has been limited by the toxicity associated with conventional myeloablative preparative regimens. Such regimens, which typically utilize total body irradiation (TBI) and high-dose chemotherapy, were once considered essential for the prevention of graft rejection. However, recent clinical studies have shown that non-myeloablative doses of fludarabine-based chemotherapy can result in alloengraftment. In murine models, we have demonstrated that severe host T cell depletion induced by combination fludarabine and cytoxan can prevent even fully-MHC mismatched marrow graft rejection. Although non-myeloablative regimens may reduce regimen-related toxicity, such transplants have been associated with a 30 to 40% incidence of severe acute GVHD that is similar to rates observed with myeloablative regimens. Because non-myeloablative regimens appear to be associated with reduced regimen-related toxicity, we have elected to conduct this phase I study of Th2 cells in the setting of an immunoablative (non-myeloablative) preparative regimen. Patients with leukemia in clinical remission, and patients with refractory lymphoid malignancy will be candidates for this HLA-matched allogeneic PBSCT protocol. Patients will receive novel induction regimen (fludarabine and EPOCH) and transplant preparative regimen (fludarabine and cytoxan) designed to maximally deplete host immune T cells capable of mediating graft rejection. After induction and preparative regimen chemotherapy, patients will receive an unmanipulated, G-CSF mobilized PBSC graft. In the initial six patients receiving this transplant procedure at the NCI, graft rejection has been successfully prevented (100% donor chimerism by day 30 post-transplant). Importantly, GVHD has been observed in all six patients, with three of the six patients developing severe GVHD (grade III). Given that this regimen successfully achieves donor engraftment, and is associated with significant GVHD, this transplant regimen represents an excellent clinical setting for the evaluation of Th2 cells. Using this non-myeloablative allogeneic PBSCT approach, we will perform a Phase I study to evaluate the safety and feasibility of administering donor Th2 cells on day 1 post-transplant. Prior to transplantation, donor CD4+ T cells will be stimulated in vitro using culture conditions that support the generation of donor CD4 cells of the Th2 cytokine profile. If this Phase I study demonstrates that Th2 cell administration is safe and feasible, a Phase III study will be performed to evaluate whether Th2 cell administration reduces the incidence and severity of GVHD. Successful implementation of this Th2 strategy will greatly reduce the morbidity and mortality associated with allogeneic PBSCT, and may also represent an approach to stem cell transplantation in patients lacking an HLA-matched donor.
Diseases such as leukemia, lymphoma, and multiple myeloma fall into the category of blood cancers. Some of these conditions can now be cured by bone marrow transplantation (BMT). The ability of BMT to cure these conditions has been credited to the use of high doses of chemotherapy, radiation therapy, and the antileukemia effect of the transplant. Because the effectiveness of BMT relies on the use of high doses of chemotherapy and total body irradiation (TBI), it is a therapy associated with toxic side effects. These side effects are often deadly and have limited BMT for use in patients under the age of 55. In this study researchers plan to treat older patients between the ages of 55 to 75 years with blood cell transplants taken from donors who are genetically matched relatives of the patient. In order to decrease the toxic side effects associated with the transplant, researchers will not use chemoradiotherapy. Instead they plan to use intensive immunosuppressive therapy and allow the transplanted cells to take effect.