View clinical trials related to Chronic Granulomatous Disease.
Filter by:Background: Bacteria that live inside the stomach and intestines are important for health. Chronic granulomatous disease (CGD) and inflammatory bowel disease (IBD) can make people have unhealthy bacteria. This can lead to gastrointestinal (GI) problems. Researchers want to see if people with CGD and IBD feel better when they change the bacteria in the stomach by following a special liquid diet. Objective: To see if an elemental diet can change the bacteria in the stomach and intestines of people with CGD and IBD. Also, to see if this helps GI symptoms. Eligibility: People ages 8-65 years with CGD, CGD-associated colitis, and IBD. Design: Participants will first be screened with: Upper GI endoscopy and/or colonoscopy. A long, thin tube with a tiny camera at the end will be passed into the participant s body through the mouth or anus. Tissue will be collected. Participants will be sedated for the procedure. They will be sedated using a special mask or small plastic tube placed in an arm vein using a needle. Participants will be put on the special diet for up to 4 weeks. They will stay in the hospital for the first 1-2 weeks. They will have check-ups. They will have blood, urine, and stool samples collected. They will keep a symptom diary to record how they feel and any GI symptoms. Participants will have 2 follow-up visits. The first will be right after they finish the diet. The second will be 4 weeks later. They will have blood, urine, and stool samples collected. They will learn about re-introducing other foods into their diet.
Background: CGD causes infections and inflammation. The only cure currently is a bone marrow transplant. Most often a perfectly matched bone marrow donor is used. Researchers want to see if they can lower the risks of using a mismatched donor. Objectives: To see if it is safe to use a related bone marrow donor who is only a partial match to a person with CGD. To see how well drugs given to a person before and after transplant help the body accept the transplant. Eligibility: People ages 4-65 with CGD for whom stem cell transplant may be a cure and who do not have a perfectly matched donor, related or unrelated. Design: Participants will be screened with: Medical history Physical exam Blood tests Participants will be admitted to the hospital about 2 weeks before the transplant. They will have blood, urine, breathing, and heart tests. They may have CT and/or MRI scans. They will have a needle inserted into their hipbone to remove marrow. They will have dental, neurologic, and psychologic tests. They will have a central catheter placed: A line will be placed into a vein in their upper chest. They will get drugs, chemotherapy, and radiation to prepare for the transplant. Participants will receive the donated cells through their catheter. The cells will be from one of their relatives. Participants will stay in the hospital about 6 weeks after the transplant. After they leave the hospital, participants will have to stay in the area with visits about 2 times a week for approximately 100 days post transplant. Then visits will be every 3 to 6 months for 2 years. Then visits will be once a year.
Early Check provides voluntary screening of newborns for a selected panel of conditions. The study has three main objectives: 1) develop and implement an approach to identify affected infants, 2) address the impact on infants and families who screen positive, and 3) evaluate the Early Check program. The Early Check screening will lead to earlier identification of newborns with rare health conditions in addition to providing important data on the implementation of this model program. Early diagnosis may result in health and development benefits for the newborns. Infants who have newborn screening in North Carolina will be eligible to participate, equating to over 120,000 eligible infants a year. Over 95% of participants are expected to screen negative. Newborns who screen positive and their parents are invited to additional research activities and services. Parents can enroll eligible newborns on the Early Check electronic Research Portal. Screening tests are conducted on residual blood from existing newborn screening dried blood spots. Confirmatory testing is provided free-of-charge for infants who screen positive, and carrier testing is provided to mothers of infants with fragile X. Affected newborns have a physical and developmental evaluation. Their parents have genetic counseling and are invited to participate in surveys and interviews. Ongoing evaluation of the program includes additional parent interviews.
This is a Phase I/II clinical trial of gene therapy for treating Chronic Granulomatous Disease using a high-safety, high-efficiency, self-inactivating lentiviral vector TYF to functionally correct the defective gene. The objectives are to evaluate the safety and efficacy of the TYF-CGD gene transfer clinical protocol.
The overall goal of the study is to investigate the functional, biochemical, and gene expression effects of Interferon-gamma 1-b (IFN-γ) on the neutrophils of patients with Chronic Granulomatous Disease (CGD). The investigators hypothesize that the clinical effects demonstrated in patients with CGD treated with IFN-γ (decreased number and severity of infections) are the result of biochemical processes and upregulation of specific genes, which lead to enhanced functionality of this immune cell population.
Treatment Study to assess of safety and efficiency of conditioning with Plerixafor and G-CSF as additional agents for prevention of graft failure after transplantation in patients with chronic granulomatous disease
In this study, the investigators test 2 dose levels of thiotepa (5 mg/kg and 10 mg/kg) added to the backbone of targeted reduced dose IV busulfan, fludarabine and rabbit anti-thymocyte globulin (rATG) to determine the minimum effective dose required for reliable engraftment for subjects undergoing hematopoietic stem cell transplantation for non-malignant disease.
This phase II trial studies how well fludarabine phosphate, cyclophosphamide, total body irradiation, and donor stem cell transplant work in treating patients with blood cancer. Drugs used in chemotherapy, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill cancer cells and shrink tumors. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient?s immune cells and help destroy any remaining cancer cells.
Background: PIDD stands for primary immune dysregulation. It is a general term that includes many different inherited immune system disorders. The immune system is the part of the body that helps fight disease and infection. People with PIDDs can develop many kinds of health problems. One of these is inflammatory bowel disease (IBD), which causes diarrhea and cramping. Researchers want to learn more about these disorders to develop possible treatments. Objective: To learn more about when and why IBD may develop in some people with PIDDs. Eligibility: People ages 3 and older who have PIDD or IBD. Healthy volunteers in this age group are also needed. Design: Visit 1: Participants will be screened with physical exam, medical history, and blood and urine tests. Visit 2: Participants will: - Have more physical exams and blood and urine tests. - Answer questions about quality of life and food history. - Provide a stool sample. - Have nasal and rectal skin swabs. - Have saliva collected. Participants will have 1 follow-up visit per year. They will repeat visit 2 procedures. Participants will be contacted by phone or email in between yearly visits. They will be asked about their health. They will complete a quality-of-life questionnaire and send a stool sample that is collected at home. If participants experience a sudden change in symptoms or undergo a new treatment, they may be asked to complete visit 2 procedures. If participants are not able to come to NIH, study data and samples can be collected without an in-person visit. Participants will have a final study visit about 10 years after Visit 1. They will repeat visit 2 procedures.
The purpose of this proposed research is to investigate the efficacy and safety of the therapy with pioglitazone for chronic granulomatous disease (CGD) patients severe infection.