Chondrosarcoma Clinical Trial
Official title:
Phase II Clinical Trial of Low-intervention Using Hypofractionated Protontherapy in Chordomas and Chondrosarcomas of the Skull Base
The project is planned as a phase II clinical trial with a low level of intervention, for the prospective evaluation of the clinical results of radical or adjuvant treatment by proton therapy in chordomas and chondrosarcomas of the skull base using hypofractionation schemes in 5 fractions, with the aim of consolidating the scientific evidence that exists with high-precision techniques with photons, increasing this evidence by adapting this treatment scheme to the proton technique. In addition, a cross-sectional prospective evaluation of the quality parameters of the dosimetry of hypofractionated proton therapy and an evaluation of the quality of life of these patients will be carried out. - Primary Objective 1. - Toxicity according to CTCAE-v5 criteria 2. - Local control determined by Magnetic Resonance with Gadolinium. - Secondary Objectives 1. To evaluate the quality of life of the patients, 3 months after the end of the treatment, using a specific questionnaire. 2. To evaluate the dosimetric benefits using techniques that allow an improvement in the dose gradient, improving the coverage of the CTV (Clinical Tumor Volume) and decreasing the dose in surrounding risk organs.
Status | Recruiting |
Enrollment | 20 |
Est. completion date | May 24, 2033 |
Est. primary completion date | May 24, 2025 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - With a baseline classification on the Karnofsky performance status scale = 70%. - With confirmed histological diagnosis of chordoma or chondrosarcoma of the skull base. - Who have signed the specific informed consent of the protocol, agreeing to participate in it. - With a maximum tumor size of 50 cc. - Whose relationship to organs at risk (OARs) allows compliance with the necessary dose restrictions to receive hypofractionated proton therapy in 5 fractions. Patients included in the study must meet dosimetric parameters that include: - Tumor CTV coverage of at least D95>90%. - Correct compliance with the dose restrictions, at least in the nominal scenario, for critical organs (optic pathway, brain stem and spinal cord) according to the guidelines published and available in the literature: Dose contnstraints for 5 fractions: Optic Nerves: D0.03cc = 25 GyRBE, V23.5 < 0.5cc. Chiasm:D0.03cc = 25 GyRBE, V23.5 < 0.5cc. Brainstem:D0.03cc = 31 GyRBE,V23 < 0.5cc. Spinal Chord: D0.03cc = 30 GyRBE, V23 < 035cc. Exclusion Criteria: - Patients with distant metastases. - Patients who have received previous irradiation in the same location. - Patients whose clinical or dosimetric characteristics do not meet the inclusion criteria. - Patients who are simultaneously participating in another study that may affect the results of this protocol. |
Country | Name | City | State |
---|---|---|---|
Spain | Centro de Protonterapia Quironsalud | Madrid |
Lead Sponsor | Collaborator |
---|---|
Quironsalud |
Spain,
Amendola BE, Amendola MA, Oliver E, McClatchey KD. Chordoma: role of radiation therapy. Radiology. 1986 Mar;158(3):839-43. doi: 10.1148/radiology.158.3.3945761. — View Citation
Ares C, Hug EB, Lomax AJ, Bolsi A, Timmermann B, Rutz HP, Schuller JC, Pedroni E, Goitein G. Effectiveness and safety of spot scanning proton radiation therapy for chordomas and chondrosarcomas of the skull base: first long-term report. Int J Radiat Oncol Biol Phys. 2009 Nov 15;75(4):1111-8. doi: 10.1016/j.ijrobp.2008.12.055. Epub 2009 Apr 20. — View Citation
Austin JP, Urie MM, Cardenosa G, Munzenrider JE. Probable causes of recurrence in patients with chordoma and chondrosarcoma of the base of skull and cervical spine. Int J Radiat Oncol Biol Phys. 1993 Feb 15;25(3):439-44. doi: 10.1016/0360-3016(93)90065-4. — View Citation
Bakker SH, Jacobs WCH, Pondaag W, Gelderblom H, Nout RA, Dijkstra PDS, Peul WC, Vleggeert-Lankamp CLA. Chordoma: a systematic review of the epidemiology and clinical prognostic factors predicting progression-free and overall survival. Eur Spine J. 2018 Dec;27(12):3043-3058. doi: 10.1007/s00586-018-5764-0. Epub 2018 Sep 15. — View Citation
Bloch OG, Jian BJ, Yang I, Han SJ, Aranda D, Ahn BJ, Parsa AT. A systematic review of intracranial chondrosarcoma and survival. J Clin Neurosci. 2009 Dec;16(12):1547-51. doi: 10.1016/j.jocn.2009.05.003. Epub 2009 Sep 30. — View Citation
Bohman LE, Koch M, Bailey RL, Alonso-Basanta M, Lee JY. Skull base chordoma and chondrosarcoma: influence of clinical and demographic factors on prognosis: a SEER analysis. World Neurosurg. 2014 Nov;82(5):806-14. doi: 10.1016/j.wneu.2014.07.005. Epub 2014 Jul 5. — View Citation
Cao H, Xiao Z, Zhang Y, Kwong T, Danish SF, Weiner J, Wang X, Yue N, Dai Z, Kuang Y, Bai Y, Nie K. Dosimetric comparisons of different hypofractionated stereotactic radiotherapy techniques in treating intracranial tumors > 3 cm in longest diameter. J Neurosurg. 2019 Mar 22;132(4):1024-1032. doi: 10.3171/2018.12.JNS181578. — View Citation
Crockard A. Chordomas and chondrosarcomas of the cranial base: results and follow-up of 60 patients. Neurosurgery. 1996 Feb;38(2):420. doi: 10.1097/00006123-199602000-00044. No abstract available. — View Citation
DeLaney TF, Liebsch NJ, Pedlow FX, Adams J, Dean S, Yeap BY, McManus P, Rosenberg AE, Nielsen GP, Harmon DC, Spiro IJ, Raskin KA, Suit HD, Yoon SS, Hornicek FJ. Phase II study of high-dose photon/proton radiotherapy in the management of spine sarcomas. Int J Radiat Oncol Biol Phys. 2009 Jul 1;74(3):732-9. doi: 10.1016/j.ijrobp.2008.08.058. Epub 2008 Dec 25. — View Citation
Diez P, Hanna GG, Aitken KL, van As N, Carver A, Colaco RJ, Conibear J, Dunne EM, Eaton DJ, Franks KN, Good JS, Harrow S, Hatfield P, Hawkins MA, Jain S, McDonald F, Patel R, Rackley T, Sanghera P, Tree A, Murray L. UK 2022 Consensus on Normal Tissue Dose-Volume Constraints for Oligometastatic, Primary Lung and Hepatocellular Carcinoma Stereotactic Ablative Radiotherapy. Clin Oncol (R Coll Radiol). 2022 May;34(5):288-300. doi: 10.1016/j.clon.2022.02.010. Epub 2022 Mar 7. — View Citation
Fossati P, Vavassori A, Deantonio L, Ferrara E, Krengli M, Orecchia R. Review of photon and proton radiotherapy for skull base tumours. Rep Pract Oncol Radiother. 2016 Jul-Aug;21(4):336-55. doi: 10.1016/j.rpor.2016.03.007. Epub 2016 Apr 16. — View Citation
Freites-Martinez A, Santana N, Arias-Santiago S, Viera A. Using the Common Terminology Criteria for Adverse Events (CTCAE - Version 5.0) to Evaluate the Severity of Adverse Events of Anticancer Therapies. Actas Dermosifiliogr (Engl Ed). 2021 Jan;112(1):90-92. doi: 10.1016/j.ad.2019.05.009. Epub 2020 Sep 3. No abstract available. English, Spanish. — View Citation
Fuchs B, Dickey ID, Yaszemski MJ, Inwards CY, Sim FH. Operative management of sacral chordoma. J Bone Joint Surg Am. 2005 Oct;87(10):2211-6. doi: 10.2106/JBJS.D.02693. — View Citation
Gelderblom H, Hogendoorn PC, Dijkstra SD, van Rijswijk CS, Krol AD, Taminiau AH, Bovee JV. The clinical approach towards chondrosarcoma. Oncologist. 2008 Mar;13(3):320-9. doi: 10.1634/theoncologist.2007-0237. Erratum In: Oncologist. 2008 May;13(5):618. — View Citation
Grimm J, LaCouture T, Croce R, Yeo I, Zhu Y, Xue J. Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy. J Appl Clin Med Phys. 2011 Feb 8;12(2):3368. doi: 10.1120/jacmp.v12i2.3368. — View Citation
Gwak HS, Yoo HJ, Youn SM, Chang U, Lee DH, Yoo SY, Rhee CH. Hypofractionated stereotactic radiation therapy for skull base and upper cervical chordoma and chondrosarcoma: preliminary results. Stereotact Funct Neurosurg. 2005;83(5-6):233-43. doi: 10.1159/000091992. Epub 2006 Mar 13. — View Citation
Henderson FC, McCool K, Seigle J, Jean W, Harter W, Gagnon GJ. Treatment of chordomas with CyberKnife: georgetown university experience and treatment recommendations. Neurosurgery. 2009 Feb;64(2 Suppl):A44-53. doi: 10.1227/01.NEU.0000341166.09107.47. — View Citation
Indelicato DJ, Rotondo RL, Begosh-Mayne D, Scarborough MT, Gibbs CP, Morris CG, Mendenhall WM. A Prospective Outcomes Study of Proton Therapy for Chordomas and Chondrosarcomas of the Spine. Int J Radiat Oncol Biol Phys. 2016 May 1;95(1):297-303. doi: 10.1016/j.ijrobp.2016.01.057. — View Citation
Iyer A, Kano H, Kondziolka D, Liu X, Niranjan A, Flickinger JC, Lunsford LD. Stereotactic radiosurgery for intracranial chondrosarcoma. J Neurooncol. 2012 Jul;108(3):535-42. doi: 10.1007/s11060-012-0858-8. Epub 2012 Apr 11. — View Citation
Jiang B, Veeravagu A, Feroze AH, Lee M, Harsh GR, Soltys SG, Gibbs IC, Adler JR, Chang SD. CyberKnife radiosurgery for the management of skull base and spinal chondrosarcomas. J Neurooncol. 2013 Sep;114(2):209-18. doi: 10.1007/s11060-013-1172-9. Epub 2013 Jun 8. — View Citation
Jiang B, Veeravagu A, Lee M, Harsh GR, Lieberson RE, Bhatti I, Soltys SG, Gibbs IC, Adler JR, Chang SD. Management of intracranial and extracranial chordomas with CyberKnife stereotactic radiosurgery. J Clin Neurosci. 2012 Aug;19(8):1101-6. doi: 10.1016/j.jocn.2012.01.005. Epub 2012 Jun 20. — View Citation
Kano H, Iqbal FO, Sheehan J, Mathieu D, Seymour ZA, Niranjan A, Flickinger JC, Kondziolka D, Pollock BE, Rosseau G, Sneed PK, McDermott MW, Lunsford LD. Stereotactic radiosurgery for chordoma: a report from the North American Gamma Knife Consortium. Neurosurgery. 2011 Feb;68(2):379-89. doi: 10.1227/NEU.0b013e3181ffa12c. — View Citation
Kano H, Sheehan J, Sneed PK, McBride HL, Young B, Duma C, Mathieu D, Seymour Z, McDermott MW, Kondziolka D, Iyer A, Lunsford LD. Skull base chondrosarcoma radiosurgery: report of the North American Gamma Knife Consortium. J Neurosurg. 2015 Nov;123(5):1268-75. doi: 10.3171/2014.12.JNS132580. Epub 2015 Jun 26. — View Citation
Kilby W, Dooley JR, Kuduvalli G, Sayeh S, Maurer CR Jr. The CyberKnife Robotic Radiosurgery System in 2010. Technol Cancer Res Treat. 2010 Oct;9(5):433-52. doi: 10.1177/153303461000900502. — View Citation
Liu AL, Wang ZC, Sun SB, Wang MH, Luo B, Liu P. Gamma knife radiosurgery for residual skull base chordomas. Neurol Res. 2008 Jul;30(6):557-61. doi: 10.1179/174313208X297878. — View Citation
Palm RF, Oliver DE, Yang GQ, Abuodeh Y, Naghavi AO, Johnstone PAS. The role of dose escalation and proton therapy in perioperative or definitive treatment of chondrosarcoma and chordoma: An analysis of the National Cancer Data Base. Cancer. 2019 Feb 15;125(4):642-651. doi: 10.1002/cncr.31958. Epub 2019 Jan 14. — View Citation
Pamir MN, Kilic T, Ture U, Ozek MM. Multimodality management of 26 skull-base chordomas with 4-year mean follow-up: experience at a single institution. Acta Neurochir (Wien). 2004 Apr;146(4):343-54; discusion 354. doi: 10.1007/s00701-004-0218-3. Epub 2004 Feb 16. — View Citation
Sahgal A, Chan MW, Atenafu EG, Masson-Cote L, Bahl G, Yu E, Millar BA, Chung C, Catton C, O'Sullivan B, Irish JC, Gilbert R, Zadeh G, Cusimano M, Gentili F, Laperriere NJ. Image-guided, intensity-modulated radiation therapy (IG-IMRT) for skull base chordoma and chondrosarcoma: preliminary outcomes. Neuro Oncol. 2015 Jun;17(6):889-94. doi: 10.1093/neuonc/nou347. Epub 2014 Dec 27. — View Citation
Sallabanda M, Garcia R, Lorenzana L, Santaolalla I, Abarca J, Sallabanda K. Treatment of Chordomas and Chondrosarcomas With CyberKnife Robotic Hypofractionated Radiosurgery: A Single Institution Experience. Cureus. 2021 Aug 8;13(8):e17012. doi: 10.7759/cureus.17012. eCollection 2021 Aug. — View Citation
Santos A, Penfold S, Gorayski P, Le H. The Role of Hypofractionation in Proton Therapy. Cancers (Basel). 2022 May 2;14(9):2271. doi: 10.3390/cancers14092271. — View Citation
Tai PT, Craighead P, Bagdon F. Optimization of radiotherapy for patients with cranial chordoma. A review of dose-response ratios for photon techniques. Cancer. 1995 Feb 1;75(3):749-56. doi: 10.1002/1097-0142(19950201)75:33.0.co;2-d. — View Citation
Thames HD, Suit HD. Tumor radioresponsiveness versus fractionation sensitivity. Int J Radiat Oncol Biol Phys. 1986 Apr;12(4):687-91. doi: 10.1016/0360-3016(86)90081-7. — View Citation
Timmerman R. A Story of Hypofractionation and the Table on the Wall. Int J Radiat Oncol Biol Phys. 2022 Jan 1;112(1):4-21. doi: 10.1016/j.ijrobp.2021.09.027. No abstract available. — View Citation
Vasudevan HN, Raleigh DR, Johnson J, Garsa AA, Theodosopoulos PV, Aghi MK, Ames C, McDermott MW, Barani IJ, Braunstein SE. Management of Chordoma and Chondrosarcoma with Fractionated Stereotactic Radiotherapy. Front Surg. 2017 Jun 23;4:35. doi: 10.3389/fsurg.2017.00035. eCollection 2017. — View Citation
Walcott BP, Nahed BV, Mohyeldin A, Coumans JV, Kahle KT, Ferreira MJ. Chordoma: current concepts, management, and future directions. Lancet Oncol. 2012 Feb;13(2):e69-76. doi: 10.1016/S1470-2045(11)70337-0. — View Citation
Yamada Y, Laufer I, Cox BW, Lovelock DM, Maki RG, Zatcky JM, Boland PJ, Bilsky MH. Preliminary results of high-dose single-fraction radiotherapy for the management of chordomas of the spine and sacrum. Neurosurgery. 2013 Oct;73(4):673-80; discussion 680. doi: 10.1227/NEU.0000000000000083. — View Citation
Zorlu F, Gurkaynak M, Yildiz F, Oge K, Atahan IL. Conventional external radiotherapy in the management of clivus chordomas with overt residual disease. Neurol Sci. 2000 Aug;21(4):203-7. doi: 10.1007/s100720070077. — View Citation
* Note: There are 37 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Acute treatment tolerance | To evaluate acute toxicity using the Common Terminology Criteria for Adverse Events (CTCAE) scale, of the implementation of hypofractionation schemes in the treatment with protontherapy of skull base chordomas and chondrosarcomas. | 0 - 3 months | |
Primary | Chronic treatment tolerance | To evaluate chronic toxicity using the Common Terminology Criteria for Adverse Events (CTCAE) scale, of the implementation of hypofractionation schemes in the treatment with protontherapy of skull base chordomas and chondrosarcomas. | 3 months - 10 years | |
Primary | Local control | To evaluate the clinical impact in terms of local control based on the radiological findings by MRI with gadolinium (considering progression to an increase in tumor volume > 10%). | 1 - 10 years | |
Secondary | Quality of life after treatment - QLQ-C30 | To evaluate the quality of life of the patients included in the study, for this, in a period of 3 months after the end of treatment, the patients will be summoned in person at the center to carry out the questionnaire of quality of life for cancer patients EORTC QLQ-C30. | 3 months | |
Secondary | Quality of life after treatmenT- QLQ-BN20 | To evaluate the quality of life of the patients included in the study, for this, in a period of 3 months after the end of treatment, the patients will be summoned in person at the center to carry out the questionnaire of quality of life for cancer patients with central nervous system tumors, EORTC QLQ-BN20. | 3 months | |
Secondary | Dosimetric benefits | To evaluate the dosimetric benefits using techniques that allow an improvement in the dose gradient, improving the coverage of the CTV (Clinical Tumor Volume) and decreasing the dose in surrounding risk organs. For this, apertures will be used whenever necessary to reduce the dose in surrounding tissues and the pre-treatment dosimetric distributions will be verified. | 3 months |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05039801 -
IACS-6274 With or Without Bevacizumab and Paclitaxel for the Treatment of Advanced Solid Tumors
|
Phase 1 | |
Recruiting |
NCT04553692 -
Phase 1a/1b Study of Aplitabart (IGM-8444) Alone or in Combination in Participants With Relapsed, Refractory, or Newly Diagnosed Cancers
|
Phase 1 | |
Recruiting |
NCT06029218 -
Analysis of the Toxicity and Efficacy of Daily 1 vs 2 Beam Proton Therapy
|
N/A | |
Recruiting |
NCT04040205 -
Abemaciclib for Bone and Soft Tissue Sarcoma With Cyclin-Dependent Kinase (CDK) Pathway Alteration
|
Phase 2 | |
Not yet recruiting |
NCT06029478 -
Understanding Engagement Trends in Chondrosarcoma Clinical Trials
|
||
Completed |
NCT01553539 -
Therapeutic Angiotensin-(1-7) in Treating Patients With Metastatic Sarcoma That Cannot Be Removed By Surgery
|
Phase 2 | |
Completed |
NCT00004241 -
17-N-Allylamino-17-Demethoxygeldanamycin in Treating Patients With Advanced Epithelial Cancer, Malignant Lymphoma, or Sarcoma
|
Phase 1 | |
Active, not recruiting |
NCT04521686 -
Study of LY3410738 Administered to Patients With Advanced Solid Tumors With IDH1 or IDH2 Mutations
|
Phase 1 | |
Recruiting |
NCT03715933 -
Phase 1 Study of INBRX-109 in Subjects With Locally Advanced or Metastatic Solid Tumors Including Sarcomas
|
Phase 1 | |
Completed |
NCT02496741 -
Metformin And Chloroquine in IDH1/2-mutated Solid Tumors
|
Phase 1/Phase 2 | |
Recruiting |
NCT04028479 -
The Registry of Oncology Outcomes Associated With Testing and Treatment
|
||
Terminated |
NCT00543712 -
A Study of PRO95780 in Patients With Advanced Chondrosarcoma (APM4171g)
|
Phase 2 | |
Completed |
NCT00464620 -
Trial of Dasatinib in Advanced Sarcomas
|
Phase 2 | |
Recruiting |
NCT04278781 -
AG-120 in People With IDH1 Mutant Chondrosarcoma
|
Phase 2 | |
Recruiting |
NCT04055220 -
Efficacy and Safety of Regorafenib as Maintenance Therapy After First-line Treatment in Patients With Bone Sarcomas
|
N/A | |
Recruiting |
NCT04673942 -
A Study of AdAPT-001 in Subjects With Sarcoma and Refractory Solid Tumors
|
Phase 2 | |
Completed |
NCT01609179 -
IPI-926 Extension Protocol for Continuation of Treatment With IPI-926
|
N/A | |
Completed |
NCT01560260 -
Linsitinib in Treating Patients With Gastrointestinal Stromal Tumors
|
Phase 2 | |
Recruiting |
NCT06387485 -
A Study to Evaluate the Utilization of 3D Printed Models in Pre-Operative Planning
|
N/A | |
Completed |
NCT02073994 -
Study of Orally Administered AG-120 in Subjects With Advanced Solid Tumors, Including Glioma, With an IDH1 Mutation
|
Phase 1 |