Clinical Trials Logo

Childhood Mixed Glioma clinical trials

View clinical trials related to Childhood Mixed Glioma.

Filter by:
  • None
  • Page 1

NCT ID: NCT01514201 Completed - Glioblastoma Clinical Trials

Veliparib, Radiation Therapy, and Temozolomide in Treating Younger Patients With Newly Diagnosed Diffuse Pontine Gliomas

Start date: February 1, 2012
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and the best dose of veliparib when given together with radiation therapy and temozolomide and to see how well they work in treating younger patients newly diagnosed with diffuse pontine gliomas. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high-energy x rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells either by killing the cells or by stopping them from dividing. Giving veliparib with radiation therapy and temozolomide may kill more tumor cells.

NCT ID: NCT01462695 Completed - Clinical trials for Recurrent Childhood Ependymoma

Sunitinib Malate in Treating Younger Patients With Recurrent, Refractory, or Progressive Malignant Glioma or Ependymoma

Start date: January 2012
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well sunitinib malate works in treating younger patients with recurrent, refractory, or progressive malignant glioma or ependymoma. Sunitinib malate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT01088763 Terminated - Clinical trials for Unspecified Childhood Solid Tumor, Protocol Specific

Gamma-Secretase Inhibitor RO4929097 in Treating Young Patients With Relapsed or Refractory Solid Tumors, CNS Tumors, Lymphoma, or T-Cell Leukemia

Start date: March 2010
Phase: Phase 1
Study type: Interventional

This phase I/II clinical trial is studying the side effects and best dose of gamma-secretase inhibitor RO4929097 and to see how well it works in treating young patients with relapsed or refractory solid tumors, CNS tumors, lymphoma, or T-cell leukemia. Gamma-secretase inhibitor RO4929097 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT01076530 Completed - Clinical trials for Recurrent Childhood Ependymoma

Vorinostat and Temozolomide in Treating Young Patients With Relapsed or Refractory Primary Brain Tumors or Spinal Cord Tumors

Start date: February 2010
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating young patients with relapsed or refractory primary brain tumors or spinal cord tumors. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug.

NCT ID: NCT00994500 Completed - Clinical trials for Unspecified Childhood Solid Tumor, Protocol Specific

Vorinostat and Bortezomib in Treating Young Patients With Refractory or Recurrent Solid Tumors, Including Central Nervous System Tumors and Lymphoma

Start date: August 2009
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of vorinostat when given together with bortezomib in treating young patients with refractory or recurrent solid tumors, including CNS tumors and lymphoma. Vorinostat and bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.

NCT ID: NCT00946335 Completed - Clinical trials for Recurrent Childhood Ependymoma

ABT-888 and Temozolomide in Treating Young Patients With Recurrent or Refractory CNS Tumors

Start date: July 2009
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of ABT-888 when given in combination with temozolomide in treating young patients with recurrent or refractory CNS tumors. ABT-888 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving ABT-888 together with temozolomide may kill more tumor cells.

NCT ID: NCT00100880 Completed - Clinical trials for Recurrent Childhood Ependymoma

Lenalidomide in Treating Young Patients With Recurrent, Progressive, or Refractory CNS Tumors

Start date: November 2004
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of lenalidomide in treating young patients with recurrent, progressive, or refractory CNS tumors. Lenalidomide may stop the growth of CNS tumors by blocking blood flow to the tumor. It may also stimulate the immune system in different ways and stop tumor cells from growing.

NCT ID: NCT00063973 Completed - Clinical trials for Recurrent Childhood Ependymoma

Cilengitide in Treating Children With Refractory Primary Brain Tumors

Start date: July 2003
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of cilengitide in treating children with recurrent, progressive, or refractory primary CNS tumors. Cilengitide may slow the growth of brain cancer cells by stopping blood flow to the tumor.

NCT ID: NCT00052780 Completed - Clinical trials for Recurrent Childhood Ependymoma

Temozolomide and O6-Benzylguanine in Treating Children With Recurrent Brain Tumors

Start date: October 2002
Phase: Phase 1
Study type: Interventional

Phase I trial to study the safety of combining O6-benzylguanine with temozolomide in treating children who have recurrent or refractory brain tumors. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. O6-benzylguanine may increase the effectiveness of temozolomide by making tumor cells more sensitive to the drug.