View clinical trials related to Cerebral Vasospasm.
Filter by:The objective is to create a dynamic clinical prediction model that includes routinely measured care and biological biomarkers to predict cerebral vasospasm within 14 days of bleeding in patients treated in the neurosurgical intensive care unit for subarachnoid hemorrhage. Patients admitted to intensive care will be followed for up to 14 days (D14 time horizon of interest), or until discharge from intensive care if earlier. Blood samples will be taken from D1 to D10 to isolate the blood biomarkers of interest for each patient. The measurement of biomarkers and cerebral vasospasm will be blinded to each other.
Cerebral vasospasm is characterized by a vasoconstriction of cerebral arteries causing a reduction of cerebral blood flow (CBF) and leading to ischemia and infarction of the brain parenchyma. Cerebral vasospasm is a serious complication of aneurysmal subarachnoid hemorrhage (SAH) with high morbidity and overall mortality of 40-50%. Although the exact mechanisms of spinal cord stimulation (SCS) on the innervation of cerebral vessels are still unclear, several hypotheses have been formulated and studies in animals and human performed with very promising results. This is a proof of concept study to better understand the effect and mechanisms of cervical spinal cord stimulation on cerebral vasospasm after aneurysmal SAH in human.
At present, cerebral vasospasm (cVS) is the main cause of delayed cerebral infarction (DCI), which leads to high disability and mortality rate after aneurysmal subarachnoid hemorrhage. As a consequence, the key of reducing DCI is to prevent cVS. But unfortunately, despite years of efforts, the prevention and treatment of cVS is still a major clinical dilemma and various ways of treatment are still being explored. Recent studies have shown that stellate ganglion block (SGB) can dilate cerebral vessels and alleviate the impact of existing cVS. However, there is no study to evaluate the effect of early application of SGB on the improvement and prevention of cVS after aSAH.
Subarachnoid hemorrhage (SAH) occurs after rupture of cerebral aneurysms. Treatment of SAH focuses on avoiding medical complications including cerebral vasospasm, which may result in limited circulation to the brain. Cerebral vasospasm, or thinning of the arteries of the brain, is a feared complication that could potentially cause stroke and worst outcomes after SAH. Hypertonic saline (HTS) is a compound that may be used to prevent vasospasm following SAH by enhancing the circulation in the brain. This study will evaluate if a protocol of volume expansion with HTS is safe and effective in patients with subarachnoid hemorrhage for the prevention of cerebral vasospasm.
The purpose of this study is to evaluate the safety and performance of the Delta system in the treatment of cerebral vasospasm post aneurysmal subarachnoid hemorrhage (aSAH) patients.
The primary objective of the study is to determine the optimal intra-arterial drug treatment regimen for arterial lumen restoration post cerebral vasospasm following aneurysmal subarachnoid hemorrhage. The secondary objective is to evaluate clinical outcome at 90 days post discharge following optimal intra-arterial drug treatment for cerebral vasospasm. We hypothesize that Intra-arterial (IA) infusion of a combination of multiple vasodilators is more efficacious than single agent treatment cerebral vasospasm therapy. All procedures done as a part of this study are standard hospital care procedures done to treat cerebral vasospasm and all drugs to be used are FDA approved.