Clinical Trials Logo

Clinical Trial Summary

Motor adaptation and generalization are believed to occur via the integration of various forms of sensory feedback for a congruent representation of the body's position in space along with estimation of inertial properties of the limb segments for accurate specification of movement. Thus, motor adaptation is often studied within curated environments incorporating a "mis-match" between different sensory systems (i.e. a visual field shift via prism googles or a visuomotor rotation via virtual reality environment) and observing how motor plans change based on this mis-match. However, these adaptations are environment-specific and show little generalization outside of their restricted experimental setup. There remains a need for motor adaptation research that demonstrates motor learning that generalizes to other environments and movement types. This work could then inform physical and occupational therapy neurorehabilitation interventions targeted at addressing motor deficits.


Clinical Trial Description

Voluntary movement and sensory perception are fundamental aspects of the human experience. Senses such as visual and proprioceptive feedback inform movement by continuously providing the central nervous system with information on limb location, movement error, and task performance. However, the specific mechanisms behind how different forms of sensory information are used to adapt and generalize movement remain poorly understood. Motor adaptation, or the modification of movement based on error feedback (Martin et al., 1996), is often elicited during rehabilitation but must be generalized to functional performance, such as activities of daily living, in order to successfully rehabilitate motor deficits following stroke. Motor adaptation and generalization are believed to occur via the integration of various forms of sensory feedback for a congruent representation of the body's position in space along with estimation of inertial properties of the limb segments for accurate specification of movement. Thus, motor adaptation is often studied within curated environments incorporating a "mis-match" between different sensory systems (i.e. a visual field shift via prism googles or a visuomotor rotation via virtual reality environment) and observing how motor plans change based on this mis-match. However, these adaptations are environment-specific and show little generalization outside of their restricted experimental setup. There remains a need for motor adaptation research that demonstrates motor learning that generalizes to other environments and movement types. This work could then inform physical and occupational therapy neurorehabilitation interventions targeted at addressing motor deficits. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05947279
Study type Interventional
Source Virginia Commonwealth University
Contact Brooke Dexheimer, PhD, OTD, OTR/L
Phone 563-547-0125
Email dexheimerb@vcu.edu
Status Recruiting
Phase N/A
Start date April 3, 2024
Completion date December 15, 2025

See also
  Status Clinical Trial Phase
Completed NCT04934319 - Association Between Balance and the Integrity of Cerebellar White Matter Tracts in a Healthy Population N/A
Not yet recruiting NCT06458153 - Imaging Speech in Neurotypical Adults and Individuals With Cerebellar Stroke N/A
Completed NCT04046055 - Cerebellar Transcranial Direct Current Stimulation in Parkinson's Disease N/A
Completed NCT05809349 - The Mechanism of cTBS Targeting Dentate Nucleus for DRE N/A