View clinical trials related to Cerebellar Ataxia.
Filter by:Cerebellar ataxias are a group of rare neurological disorders that are clinically and genetically heterogeneous, with several hundred genes and diseases known to date. Over the last decade, their diagnosis has been revolutionised by the development of high-throughput sequencing technologies such as exome/genome sequencing (ES/GS), making it possible to obtain a molecular diagnosis in a growing number of patients. However, almost 40% of patients remain without a molecular diagnosis, raising questions about the limitations of sequencing technologies based on a technique known as short-read. One limitation of short-read is its poor ability to detect repeated motif expansions, a frequent mechanism in neurology and associated with more than thirty neurogenetic diseases. Although tools for analysing ES/GS data have gradually been developed in response to this problem, their effectiveness and reliability remain moderate. To date, the gold standard for detecting these expansions remains targeted approaches such as PCR and Southern blot, which are long, tedious and costly processes that require an independent search for each expansion, forcing clinicians to select expansions and limiting diagnostic yield. In addition, there are diseases associated with expansions so rare that no French laboratory offers a diagnostic test. The recent development of long fragment genome sequencing (long-read - lrGS) could provide a solution to all these problems. These technologies are based on a sequencing process during which DNA is preserved in the form of large molecules of several tens of thousands of bases. Regions of the genome containing expansions can therefore be studied directly in their entirety, avoiding the difficulties of reconstruction from small fragments, which is the case in short-read sequencing. In addition, lrGS can characterize the size of repeated motifs and thus detect any causal expansion in an individual in a single analysis. A number of recently published studies, particularly in neurology, have demonstrated the ability of lrGS to detect pathologies with known expansions (SCA36, C9ORF72), but also to discover new ones and thus explain the molecular basis of rare pathologies (SCA27b, NOTCH2NLC). Although these sequencing technologies have been around for a number of years, access is still restricted to research work and is limited by their higher cost. Their value as a second-line diagnostic tool has yet to be demonstrated. The investigators propose to evaluate the feasibility and diagnostic yield of Oxford Nanopore lrGS in duo or trio (patients + 1 or 2 first-degree relatives) in patients with cerebellar ataxia without molecular diagnosis after short-read GS. This will be the first study to transfer this lrGS technique to the second line, in real-life conditions, for the causal genetic diagnosis of cerebellar ataxia.
The purpose of this study is to determine the effects of high intensity stepping training on gait outcome measures in patients with cerebellar ataxia, to identify the correlations between gait outcome measures and measures of ataxia and balance in individuals with cerebellar ataxia and to determine differences in response to high intensity stepping training based off of diagnosis.
Ataxia refers to a group of neurological disorders characterized by impaired coordination and balance due to dysfunction in the cerebellum or its connections. Traditional therapeutic approaches for ataxia have shown limited efficacy, prompting researchers to explore alternative interventions. Non-invasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), and intermittent theta burst stimulation (iTBS), have emerged as potential therapeutic options. The aim of this study is to investigate the combined effect of tACS-iTBS on balance functions in ataxia disorders.
The purpose of the clinical trial is to study the therapeutic efficacy and safety of Stemchymal® infusions for polyglutamine spinocerebellar ataxia treatment by a randomized, double-blind, placebo-controlled study design. Eligible subjects will receive Stemchymal® through intravenous infusion.
Study design: Single arm open-label clinical trial in ataxia-telangiectasia to test the effects of nicotinamide riboside on ataxia scales, immune function, and neurofilament light chain. Study population: 6-10 patients with Ataxia-Telangiectasia. Dose: Nicotinamide riboside 25 mg/kg/day in 3 equal divided doses. Primary endpoint: Scales for assessment and rating of ataxia (SARA), and International Cooperative Ataxia Rating Scale (ICARS). Improvement of at least ½ standard deviation in key clinical scales which includes either; a) significant improvement in total combined scores from the SARA and ICARS scales, and /or b) significant improvements any aspects of the SARA and ICARS scales individually, especially pertaining to; Postural and gait improvements, Improved syllable speed and articulation, Improved fine motor skills. Secondary endpoints: Serum analysis of neurofilament light chain (Nfl), Type 1 Interferon (INFs) epigenetic signature
The goal of this project is to evaluate how aerobic training impacts eyeblink conditioning as a proxy for cerebellar dependent motor learning. The newly developed smartphone application, iBlink, will be used to test participants at home in an effort to improve recruitment and increase the sample size of the study. The investigators hypothesize that aerobic training, but not balance training, will improve eyeblink conditioning in participants with spinocerebellar ataxias. The current study focuses on Aim 3 of this project.
Cerebellar ataxia is a pathology linked to the lesion of the cerebellum or the afferent and/or efferent cerebellar pathways. The aetiology can be an acquired cerebral lesion, following a chemical poisoning or a genetic degenerative lesion (for example : Friedreich's ataxia, spinocerebellar ataxias, etc.). As reported by the latest estimate available, genetic degenerative cerebellar ataxias affect approximately 6,000 patients in France (Orpha.net). Symptoms suffered by ataxic patients are : problems and gait disorders along with difficulties in coordination resulting in ataxia, uncoordinated movements. These symptoms cause a decrease in the quality of life on patients with spinocerebellar ataxia. The symptoms improvement linked to the cerebellar syndrome is based on rehabilitation that can be supplemented by use of technical aids. Current scientific knowledge confirms that intensive rehabilitation by physiotherapy and occupational therapy in patients with degenerative ataxias improves cerebellar symptoms. Nevertheless, the choice rehabilitation technique stay at the appreciation of the therapist. From the observation, the investigators have designed an intensive multidisciplinary rehabilitation program, called PAMPERO, with partner patients member of two genetic degenerative ataxia patient organisations. This 5-weeks program has been used in clinic during 3 years on 28 patients. It appears to be the only one in France. The preliminary results show a positive effect on ataxia symptom. Nevertheless, the duration of the benefice over time and the effect on the quality of life stay unknown. However, the quality of life is mainly affected by the participation restriction due to the risk of falling. The most frequent complaint from partner patient is the diminution of the social interaction resulting of the incapacity to move without risk. The present protocol aimed at evaluating the Rehabilitation Program in collaboration with partner patient on the symptom intensity, activity and quality of life on genetic and degenerative ataxia. This PAMPERO program's effect will be assessed by comparing the difference of Intensity of symptom measured by to Scale for the Assessment and Rating of Ataxia (SARA) at inclusion and 3 months after the end of rehabilitation.
This is an open-label study evaluating the safety, tolerability, and PK following single-dose administration of omaveloxolone in pediatric patients with FA. The study will consist of 3 parts (Parts A, B, and C) based on age.
Friedreich's Ataxia (FA) Friedreich's Ataxia is a neurodegenerative disease caused by a homozygous expansion of the GAA triplet repeats of the frataxin gene (FXN). FA usually begins in childhood or adolescence. It affects both boys and girls. At the neurophysiological level, FA is characterised by neuronal loss affecting the dorsal root ganglia, spinal cord and cerebellum. At present, daily exercise is the only way to combat the disease. There is no cure for Friedreich's ataxia. Clinically, FA mainly combines balance, movement coordination, articulation (dysarthria) with cardiac involvement and sometimes diabetes . After a few years of evolution, walking is no longer possible. Recent data ; also indicate disturbances in information processing and cognitive functioning. In short, FA involves adolescents who progressively lose walking, writing and speech for some; however, each patient progresses differently with respect to the disease, and this is the case with respect to motor and cognitive symptoms.
Cerebellar ataxia (CA) is a collection of signs and symptoms caused by cerebellar dysfunction, which can be the result of different disease processes including hereditary and acquired conditions. High incidence of falls is reported in people with CA due to poor balance while walking. Therefore, it is crucial to assess the balance of people with CA to identify potential fallers. There are some clinical tests commonly used for assessing the balance of people with CA, including both generic measures of balance and ataxia-specific rating scales. The current best balance outcome measures for CA includes Berg Balance Scale (BBS), Timed Up and Go test (TUG), and the balance related items in Scale for the assessment and rating of ataxia (SARA). TUG is commonly used in clinical settings for the assessment of mobility and fall risk of individuals. However, a study done by Winser et. al (2017) found that the correlation between TUG and ataxia rating scales (SARA and ICARS) is only moderate. This indicates that the gait speed and functional mobility findings of TUG might not truly reflect the balance deficits of CA. Therefore, our study will develop a modified TUG for the assessment of balance in people with CA. Circular TUG (cTUG) is a modified version of the standard TUG. cTUG is an equilibrium test that challenges subjects' ability to maintain balance in response to the constant change in direction of walking. In cTUG, the subject walks a semi-circular pathway instead of a straight line. Walking in a circular pathway targets at challenging the coordination of people with CA as walking in a circle requires constant change in directions and correction after feedback. It is speculated that the cTUG will have better accuracy in predicting the balance and falls risk among people with CA. We will target at recruiting 30 healthy volunteers and 30 individuals with cerebellar ataxia. Besides the cTUG we will also assess disease severity of ataxia using the Scale for the Assessment and Rating of Ataxia (SARA), balance using the Berg Balance Scale, Timed Up and Go test, Sensory Organization test, Limits of Stability test and functional independence using the Barthel Index. For validation of the cTUG, two types of reliability will be examined, including intra-rater reliability and interrater reliability and four types of validity will be assessed, including concurrent validity, convergent validity, discriminant validity, and external validity.