Clinical Trials Logo

Central Nervous System Neoplasms clinical trials

View clinical trials related to Central Nervous System Neoplasms.

Filter by:

NCT ID: NCT01273090 Completed - Lymphoma Clinical Trials

Imetelstat Sodium in Treating Young Patients With Refractory or Recurrent Solid Tumors or Lymphoma

Start date: May 2011
Phase: Phase 1
Study type: Interventional

RATIONALE: Imetelstat sodium may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I clinical trial is studying the side effects and best dose of imetelstat sodium in treating young patients with refractory or recurrent solid tumors or lymphoma.

NCT ID: NCT01222221 Completed - Clinical trials for Brain and Central Nervous System Tumors

Vaccine Therapy, Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed Glioblastoma Multiforme

Start date: July 2010
Phase: Phase 1
Study type: Interventional

RATIONALE: Vaccines made from peptides may help the body build an effective immune response to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving vaccine therapy together with temozolomide and radiation therapy may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects of vaccine therapy when given together with temozolomide and radiation therapy in treating patients with newly diagnosed glioblastoma multiforme.

NCT ID: NCT01217437 Completed - Clinical trials for Recurrent Medulloblastoma

Temozolomide and Irinotecan Hydrochloride With or Without Bevacizumab in Treating Young Patients With Recurrent or Refractory Medulloblastoma or CNS Primitive Neuroectodermal Tumors

Start date: November 22, 2010
Phase: Phase 2
Study type: Interventional

This randomized phase II trial studies how well giving temozolomide and irinotecan hydrochloride together with or without bevacizumab works in treating young patients with recurrent or refractory medulloblastoma or central nervous system (CNS) primitive neuroectodermal tumors. Drugs used in chemotherapy, such as temozolomide and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. It is not yet known whether temozolomide and irinotecan hydrochloride are more effective with or without bevacizumab in treating medulloblastoma or CNS primitive neuroectodermal tumors.

NCT ID: NCT01164189 Completed - Clinical trials for Central Nervous System Tumors

Bevacizumab in Recurrent Grade II and III Glioma

TAVAREC
Start date: February 2011
Phase: Phase 2
Study type: Interventional

RATIONALE: Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. It is not yet known whether temozolomide is more effective when given with or without bevacizumab in treating patients with recurrent glioma. PURPOSE: This randomized clinical trial is studying how well temozolomide works with or without bevacizumab in treating patients with recurrent glioma.

NCT ID: NCT01158300 Completed - Clinical trials for Brain and Central Nervous System Tumors

PTC299 in Treating Young Patients With Refractory or Recurrent Primary Central Nervous System Tumors

Start date: November 2010
Phase: Phase 1
Study type: Interventional

RATIONALE: PTC299 may stop the growth of tumor cells by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and the best dose of PTC299 in treating young patients with recurrent or refractory primary central nervous system tumors.

NCT ID: NCT01135563 Completed - Solid Tumors Clinical Trials

Study of Vinblastine and Sirolimus in Children With Recurrent/Refractory Solid Tumours Including CNS Tumours

Start date: April 2010
Phase: Phase 1
Study type: Interventional

This study is a Phase I study using vinblastine and sirolimus in patients with relapsed solid tumors including selected brain tumors and lymphoma. The investigators hypothesis is that the combination administration of weekly vinblastine and sirolimus is safe.

NCT ID: NCT01067196 Completed - Clinical trials for Central Nervous System Tumors

Outcomes Study of Late Effects After Proton RT for Pediatric Tumors of the Brain, Head, and Neck

CN01
Start date: February 2010
Phase:
Study type: Observational

The purpose of this study is to collect information from medical records to see what effects proton beam radiation has on cancer and analyze possible side effects.

NCT ID: NCT01062399 Completed - Clinical trials for Brain and Central Nervous System Tumors

Everolimus, Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed Glioblastoma Multiforme

RTOG 0913
Start date: December 2010
Phase: Phase 1/Phase 2
Study type: Interventional

RATIONALE: Everolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high energy x-rays to kill tumor cells. Giving everolimus together with temozolomide and radiation therapy may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of everolimus when given together with temozolomide and radiation therapy and to see how well it works in treating patients with newly diagnosed glioblastoma multiforme.

NCT ID: NCT01019434 Completed - Clinical trials for Brain and Central Nervous System Tumors

Radiation Therapy and Temsirolimus or Temozolomide in Treating Patients With Newly Diagnosed Glioblastoma

Start date: October 2009
Phase: Phase 2
Study type: Interventional

RATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. It is not yet known whether radiation therapy is more effective when given together with temsirolimus or temozolomide in treating patients with glioblastoma. PURPOSE: This randomized phase II trial is studying giving radiation therapy together with temsirolimus to see how well it works compared with giving radiation therapy together with temozolomide in treating patients with newly diagnosed glioblastoma.

NCT ID: NCT01013285 Completed - Clinical trials for Brain and Central Nervous System Tumors

Bevacizumab, Temozolomide, and External Beam Radiation Therapy as First-Line Therapy in Treating Patients With Newly Diagnosed Glioblastoma Multiforme or Gliosarcoma

Start date: June 2006
Phase: Phase 2
Study type: Interventional

RATIONALE: Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of tumor cells by blocking blood flow to the tumor. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high energy x-rays to kill tumor cells. Giving bevacizumab together with temozolomide and radiation therapy may kill more tumor cells. PURPOSE: This phase II trial is studying the side effects and how well giving bevacizumab together with temozolomide and external beam radiation therapy works when given as first-line therapy in treating patients with newly diagnosed glioblastoma multiforme or gliosarcoma.