View clinical trials related to Central Nervous System Neoplasms.
Filter by:This phase II Pediatric MATCH trial studies how well tazemetostat works in treating patients with brain tumors, solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have come back (relapsed) or do not respond to treatment (refractory) and have EZH2, SMARCB1, or SMARCA4 gene mutations. Tazemetostat may stop the growth of tumor cells by blocking EZH2 and its relation to some of the pathways needed for cell proliferation.
This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with FGFR mutations that have spread to other places in the body and have come back or do not respond to treatment. Erdafitinib may stop the growth of cancer cells with FGFR mutations by blocking some of the enzymes needed for cell growth.
This study proposes to do a prospective observational cohort study evaluating the quality of life (QOL) of children with Central Nervous System (CNS) tumors and their families who choose to self-medicate with marijuana-derived products while undergoing treatment at Children's Hospital Colorado (CHCO).
This phase I trial studies the side effects and best dose of nanoparticle albumin-bound rapamycin when given together with temozolomide and irinotecan hydrochloride in treating pediatric patients with solid tumors that have come back after treatment and a period of time during which the tumor could not be detected or has not responded to treatment. Nanoparticle albumin-bound rapamycin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as temozolomide and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nanoparticle albumin-bound rapamycin, temozolomide, and irinotecan hydrochloride may cause the cancer to stop growing or shrink for a period of time and may lessen the symptoms that are caused by the cancer.
The purpose of this study is to test the safety of neratinib at different dose levels and to find out what effects, good and bad, it has on the patients and the cancer.
This phase II trial studies how well cabozantinib-s-malate works in treating younger patients with sarcomas, Wilms tumor, or other rare tumors that have come back, do not respond to therapy, or are newly diagnosed. Cabozantinib-s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for tumor growth and tumor blood vessel growth.
Background: Brain and spinal cord tumors are uncommon. But they contribute substantially to cancer deaths in the U.S. in children and adults. Little progress has been made in treating brain tumors. Researchers want to learn more about these tumors by studying people who have them. Objectives: To understand brain and spinal cord tumors better and uncover areas for further research. Also, to connect people with these tumors to doctors who can help them manage their illness and give them new treatment options. Design: Participants will have an initial (baseline) visit. They will have their medical history taken and undergo physical and neurological exams. They will have blood tests. They may have scans (imaging studies) of the nervous system. If participants have urine or cerebrospinal fluid collected during their regular care, researchers may save some. Brain tumor tissue from a prior surgery may be studied. Genomic DNA testing will be done on samples. Results will be linked to participants medical and/or family history. The number of study visits at NIH will depend on the wishes of participants and their local doctors. Participants will take a brain tumor survey on a computer. They can take it all at once or in 6 separate sections. Participants will answer questions about their general well-being. They will answer questions to learn if they have symptoms of depression or anxiety. Physicians will discuss test results with participants. They will recommend management and treatment options.
This is a prospective, observational registry in patients who have been prescribed Gliadel Wafer by the physician as part of usual care.
This is an open-label, Phase 1/2 multicenter dose escalation study in pediatric patients with relapsed or refractory extracranial solid tumors (Phase 1), with additional expansion cohorts (Phase 2) in patients with primary brain tumors harboring NTRK1/2/3 or ROS1 gene fusions, and extracranial solid tumors harboring NTRK1/2/3 or ROS1 gene fusions.
The development of next generation sequencing (NGS) techniques, including whole genome (WGS), exome (WES) and RNA sequencing has revolutionized the ability of investigators to query the molecular mechanisms underlying tumor formation. Through the Pediatric Cancer Genome Project (PCGP), investigators at St. Jude Children's Research Hospital (SJCRH) have successfully used NGS approaches to evaluate more than 1,000 pediatric cancers ranging from hematologic malignancies to central nervous system (CNS) and non-CNS solid tumors. From these and related studies, it has become clear that genomic approaches can accurately classify tumors into distinct pathologic and prognostic subtypes and detect alterations in cellular pathways that may serve as novel therapeutic targets. Collectively, these studies suggest that by characterizing the genomic make-up of individual tumors, investigators will be able to develop personalized and potentially more effective cancer treatments and/or preventive measures. This protocol was initially enacted to usher NGS approaches into routine clinical care. During the initial phase of the G4K protocol, 310 participants were recruited and enrolled onto the study. Tumor and/or germline sequencing was completed on all 310 patients, with 253 somatic reports generated (representing 96% of the 263 participants for whom tumor tissue was available and analyzed) and 301 germline reports generated (100% of the 301 participants who agreed to the receipt of germline results). Analyses of the study data are ongoing with plans to prepare initial manuscripts within the next several months. Due to the successful initial execution of the G4K protocol, clinical genomic sequencing of tumor and germline samples is now offered as part of standard clinical care for pediatric oncology patients at St. Jude. The G4K protocol has now been revised. With the revision, the study team will record, store and analyze germline and tumor genomic information. Through the collection of these data, we will examine how germline mutations in 150 cancer predisposition genes influence clinical presentation, tumor histology, tumor genomic findings, response to therapy and long-term outcomes. The overall goals of this research are to further define the prevalence, spectrum and heritability of germline variants in these genes and to decipher how germline mutations influence the phenotypes of an expanding array of cancer predisposition syndromes. These studies allow us to provide more accurate genetic counseling and management strategies to future children harboring mutations in these genes. This remains a non-therapeutic study. Investigators anticipate a sample size of approximately 5000 patients who will be recruited over the next 7 years.