View clinical trials related to Central Nervous System Neoplasms.
Filter by:RATIONALE: Radiolabeled octreotide can locate tumor cells and deliver radioactive tumor-killing substances to them without harming normal cells. PURPOSE: This phase I trial is to study the safety and effectiveness of radiolabeled octreotide in treating children who have advanced or refractory solid tumors.
RATIONALE: Drugs used in chemotherapy work in different ways to stop tumor cells from dividing so they stop growing or die. Giving a chemotherapy drug before surgery may shrink the tumor so that it is no longer present by conventional imaging and tumor markers from serum and cerebrospinal fluid. Radiation therapy uses high-energy x-rays to damage tumor cells. Peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. Combining different types of therapy may kill more tumor cells. PURPOSE: This Phase II trial is studying how well neoadjuvant chemotherapy with or without surgery and with or without high dose chemotherapy and peripheral stem cell transplantation, can increase response rates prior to radiation therapy and increase progression free and overall surviving patients with newly diagnosed intracranial germ cell tumors.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Thalidomide and celecoxib may stop the growth of tumor cells by stopping blood flow to the tumor and may increase the effectiveness of temozolomide by making tumor cells more sensitive to the drug. PURPOSE: Phase II trial to study the effectiveness of combining temozolomide, thalidomide, and celecoxib following radiation therapy in treating patients who have newly diagnosed glioblastoma multiforme.
RATIONALE: Thalidomide and celecoxib may stop the growth of tumor cells by stopping blood flow to the tumor. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining thalidomide and celecoxib with etoposide and cyclophosphamide may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of combining thalidomide and celecoxib with etoposide and cyclophosphamide in treating patients who have relapsed or refractory malignant glioma.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of oxaliplatin in treating children who have recurrent or refractory medulloblastoma, supratentorial primitive neuroectodermal or atypical teratoid rhabdoid tumor.
RATIONALE: Chemotherapy drugs such as sirolimus use different ways to stop tumor cells from dividing so they stop growing or die. Giving a chemotherapy drug before surgery may shrink the tumor so that it can be removed during surgery. PURPOSE: Phase I/II trial to study the effectiveness of sirolimus in treating patients who have glioblastoma multiforme that did not respond to previous radiation therapy.
RATIONALE: Brachytherapy uses radioactive material to kill cancer cells remaining after surgery. PURPOSE: Phase I trial to study the effectiveness of brachytherapy in treating patients who have recurrent malignant glioma.
RATIONALE: Electroacupuncture may help to reduce or prevent delayed nausea and vomiting in patients treated with chemotherapy. PURPOSE: This randomized clinical trial is studying the effectiveness of electroacupuncture in treating delayed nausea and vomiting in patients who are receiving chemotherapy for newly diagnosed childhood sarcoma, neuroblastoma, nasopharyngeal cancer, germ cell tumors, or Hodgkin lymphoma.
RATIONALE: Radiation therapy such as boron neutron capture therapy may kill tumor cells without harming normal tissue. PURPOSE: Phase I/II trial to study the effectiveness of boron neutron capture therapy in treating patients who have glioblastoma multiforme or melanoma metastatic to the brain.
RATIONALE: Thalidomide may stop the growth of glioblastoma multiforme by stopping blood flow to the tumor. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining thalidomide with irinotecan may kill any tumor cells remaining after radiation therapy. PURPOSE: Phase II trial to study the effectiveness of combining thalidomide with irinotecan in treating patients who have glioblastoma multiforme that has been treated with radiation therapy.