View clinical trials related to Cardiomyopathy, Hypertrophic.
Filter by:Heart failure (HF) is the common end-stage of different medical conditions. It is the only growing cardiovascular disease and its prognosis remains worse than that of many malignancies. The lack of evidence-based treatment for patients with diastolic HF (HFpEF) exemplifies that the current "one for all" therapy has to be advanced by an individualized approach. Inherited cardiomyopathies can serve as paradigmatic examples of different HF pathogenesis. Both gain- and loss-of-function mutations of the same gene cause disease, calling for disease-specific agonism or antagonism of this gene´s function. However, mutations alone do not predict the severity of cardiomyopathies nor therapy, because their impact on cardiac myocyte function is modified by numerous factors, including the genetic context. Today, patient-specific cardiac myocytes can be evaluated by the induced pluripotent stem cell (hiPSC) technology. Yet, unfolding the true potential of this technology requires robust, quantitative, high content assays. The researchers' recently developed method to generate 3D-engineered heart tissue (EHT) from hiPSC provides an automated, high content analysis of heart muscle function and the response to stressors in the dish. The aim of this project is to make the technology a clinically applicable test. Major steps are (i) in depths clinical phenotyping and genotyping of patients with cardiomyopathies or HFpEF, (ii) follow-up of the clinical course, (iii) generation of hiPSC lines (40 patients, 40 healthy controls), and (iv) quantitative assessment of hiPSC-EHT function under basal conditions and in response to pro-arrhythmic or cardio-active drugs and chronic afterload enhancement. The product of this study is an SOP-based assay with standard values for hiPSC-EHT function/stress responses from healthy volunteers and patients with different heart diseases. The project could change clinical practice and be a step towards individualized risk prediction and therapy of HF.
Human induced pluripotent stem cells (hiPSCs) have driven a paradigm shift in the modeling of human disease; the ability to reprogram patient-specific cells holds the promise of an enhanced understanding of disease mechanisms and phenotypic variability, with applications in personalized predictive pharmacology/toxicology, cell therapy and regenerative medicine. This research will collect blood or skin biopsies from patients and healthy controls for the purpose of generating cell and tissue models of Mendelian heritable forms of heart disease focusing on cardiomyopathies, channelopathies and neuromuscular diseases. Cardiomyocytes derived from hiPSCs will provide a ready source of disease specific cells to study pathogenesis and therapeutics.
The purpose of this study is to establish initial safety, tolerability, pharmacokinetics and pharmacodynamics of MYK-461 in human subjects. This is a sequential group, single ascending (oral) dose study in NYHA Class I, II, or III patient volunteers aged 18-65 years.
The primary objective of this study was to evaluate the effect of eleclazine (GS-6615) on exercise capacity as measured by Peak oxygen uptake (VO2) achieved during cardiopulmonary exercise testing (CPET), in participants with symptomatic hypertrophic cardiomyopathy (HCM).
Assessment of wall thickness in hypertrophic cardiomyopathy (HCM) is of diagnostic and prognostic importance given its known association with sudden cardiac death. However, data regarding comparison of imaging modalities for this key measurement is lacking. This study seeks to compare assessment of maximum wall thickness between clinically indicated echocardiography (with and without contrast) and clinically indicated cardiac magnetic resonance imaging.
This is a joint project by Heidelberg University and Greifswald University. Our objective is to establish an unique national multi-center registry and biobank of well phenotyped patients with non-ischemic cardiomyopathies (CMP) including in depth clinical, molecular and omics-based phenotyping to serve as: 1. central hub for clinical outcome studies. 2. joint resource for diagnostic and therapeutic trials. 3. common biomaterial bank. 4. resource for detailed molecular analyses on patients' biomaterials and patient specific model systems.
Compare the results of reconstruction and mitral valve replacement in the surgical treatment of obstructive hypertrophic cardiomyopathy with severe mitral insufficiency.
Hypertrophic cardiomyopathy (HCM) is the most common monogenic heart disease and the most frequent cause of sudden cardiac death (SCD) in the young. It is characterized by unexplained left ventricular hypertrophy (LVH), diffuse and patchy fibrosis, and myofibrillar disarray. While the majority of patients remain asymptomatic, prognosis is poor in a subset who present with SCD or progress to heart failure (HF). Current methods to predict risk of these adverse events and to target therapy are limited. Current medical therapy does not protect against SCD, nor does it prevent development of HF. Therefore, the identification of novel risk markers would help develop therapeutic targets aimed at altering the phenotypic expression to impact the natural history, especially SCD and HF. Cardiovascular magnetic resonance (CMR) is emerging as a powerful tool for diagnosis and risk stratification in HCM including assessment of LV mass and pattern of hypertrophy. Late gadolinium enhancement by CMR is a marker of focal myocardial fibrosis which is thought to underlie the arrhythmogenic substrate as well as promote development of HF. The investigators hypothesize that HCM patients with a higher primary outcome event rate can be identified by novel CMR findings. The majority of cases of HCM are autosomal dominant and about 60% are caused by mutations in genes encoding cardiac sarcomeric proteins. However, the relationship between genetic mutation, disease phenotype, and clinical outcomes remains poorly understood. The investigators hypothesize that HCM patients with sarcomeric HCM mutations will have a higher primary outcome event rate and more marked myocardial pathology on CMR than those without. Furthermore, there may be a link between sarcomeric mutations and fibrosis, as mutation carriers with overt HCM as well as those without hypertrophy have elevated markers of collagen turnover. The investigators therefore hypothesize that serum biomarkers of collagen metabolism in HCM will predict outcomes. Thus, the Specific Aim is to develop a predictive model of cardiovascular outcomes in HCM by: 1) using exploratory data mining methods to identify demographic, clinical, and novel CMR, genetic and biomarker variables associated with the outcomes and 2) develop a score from the predictive model that can be used to assess risk given a patient's combination of risk factors, thus establishing the evidence base to enable clinical trial design to reduce morbidity and mortality in HCM in a cost-effective manner.
The purpose of this trial is to determine whether treatment with valsartan will have beneficial effect in early hypertrophic cardiomyopathy (HCM) by assessing many domains that reflect myocardial structure, function and biochemistry.
The purpose of the study is to perform endocardial catheter CRyo-Ablation to relieve the LVOT obstruction in patients with Hypertrophic Obstructive Cardiomyopathy. The investigators hypothesize that the investigators will be able to reduce > 50% of the initial LVOT gradient. This will be considered as a successful procedure.