Clinical Trials Logo

Clinical Trial Summary

The classic physiopathology of cardiogenic shock is explained by a systolic ventricular failure, responsible for a decrease in cardiac output associated with high systemic vascular resistances (SVR). This theory is currently challenged in light of the data collected in the SHOCK study, which assessed outcome of early revascularization versus initial medical stabilization, in cardiogenic shock following myocardial infarction.13 A sub-study highlighted depressed SVR in the population with ischemic cardiogenic shock, related to a systemic inflammatory response syndrome.14 Furthermore, mean FEVG was 30% in the SHOCK trial,13 with a similar distribution with post myocardial infarction heart failure patients without signs of shock.15-19 Thus, alteration of myocardial contractility can be only moderate in cardiogenic shock and isn't the only cause responsible for the hemodynamic instability.20 Recent studies suggest the important roles of the peripheral vascular system and neurohormonal system in the genesis and prolongation of cardiogenic shock.12 Vasodilation caused by nitrous oxide synthase activation27 explains the absence of compensating vasoconstriction observed during the SHOCK trial13, and leads to decreased systemic and coronary perfusion, thus increasing myocardial ischemia and initial ventricular dysfunction. 28,29 Cotter et al. conducted an interesting study of hemodynamic evaluation of various cardiac conditions where they observed a significant variability in the peripheral vascular status, with systemic vascular resistances collapsed in certain patients (similar to those observed in septic shock) and rather close to normal or very high resistances in other patients.21 However these data were obtained from a selected group of patients without differentiating the etiology of cardiogenic shock. Finally, the majority of available studies were limited to cardiogenic shock whose etiology was myocardial infarction.

Therapeutic management of cardiogenic shock is based in first intention on an inotropic support by Dobutamine.11,23 However, better outcomes on contractility and microcirculatory state have been observed with the use of a vasopressor support by Norepinephrine, suggesting the importance of SVR decreasing in genesis of cardiogenic shock.14,24 Recent reviews showed very few data on inotropic treatment and association with vasopressor support,22 hence the low level of recommendations in current guidelines.11,23

So far it is crucial to accurately characterize hemodynamic status and in particular the systemic vascular resistance for patients with cardiogenic shock. Important variabilities in hemodynamic profiles observed in Cooter's trial could explain the difficulty in defining an optimal therapeutic strategy.

the investigators hypothesize that the hemodynamic profile, particularly SVR, of patients with cardiogenic shock is different depending on their etiology. Ischemic cardiogenic shock should be characterized by lower SVR, in relation to a major role of systemic inflammatory response syndrome. On the contrary, non-ischemic cardiogenic shock could be associated with normal or elevated SVR, and thus could explain the variability in distribution of SVR.


Clinical Trial Description

n/a


Study Design


Related Conditions & MeSH terms


NCT number NCT03283995
Study type Observational [Patient Registry]
Source Assistance Publique Hopitaux De Marseille
Contact laurent BONELLO
Phone 0491968683
Email laurent.bonello@ap-hm.fr
Status Recruiting
Phase
Start date September 6, 2017
Completion date March 2019

See also
  Status Clinical Trial Phase
Active, not recruiting NCT04325035 - The Safety and Efficacy of Istaroxime for Pre-Cardiogenic Shock Phase 2
Active, not recruiting NCT05100836 - SURPASS Impella 5.5 Study
Not yet recruiting NCT05106491 - Efficacy and Safety of Synchronized Cardiac Support in Cardiogenic Shock Patients N/A
Completed NCT02301819 - ExtraCorporeal Membrane Oxygenation in the Therapy of Cardiogenic Shock N/A
Completed NCT01367743 - Study Comparing the Efficacy and Tolerability of Epinephrine and Norepinephrine in Cardiogenic Shock Phase 4
Recruiting NCT05728359 - Genomic Determinants of Outcome in Cardiogenic Shock
Recruiting NCT05699005 - Individualized or Conventional Transfusion Strategies During Peripheral VA-ECMO Phase 1
Not yet recruiting NCT06338345 - Pharmacokinetics and Modelling of Beta-Lactam in ECMO-VA Patients N/A
Completed NCT03436641 - Microcirculation in Cardiogenic Shock
Recruiting NCT03313687 - SafeTy and Outcome of contemPorary Treatment Strategies for Cardiogenic SHOCK
Recruiting NCT05506449 - The RECOVER IV Trial N/A
Completed NCT04144660 - "Treatment Use of ECMO In Pregnancy or Peripartum Patient."
Completed NCT04548739 - Cerebral Autoregulation in Pediatric ECMO (ECMOX 2)
Recruiting NCT04141410 - Global Longitudinal Strain Assessment in Cardiogenic Shock During Sepsis
Not yet recruiting NCT05879276 - Effect at 3 Months of Early Empagliflozin Initiation in Cardiogenic Shock Patients on Mortality, Rehospitalization, Left Ventricular Ejection Fraction and Renal Function. Phase 3
Enrolling by invitation NCT05570864 - Score TO Predict SHOCK - STOP SHOCK
Completed NCT02591771 - Study of Multistep Pharmacological and Invasive Management for Cardiogenic Shock Phase 2
Terminated NCT02279979 - Thoratec Corporation HeartMate PHP™ Cardiogenic Shock Trial N/A
Completed NCT01374867 - CardShock Study and Registry N/A
Recruiting NCT00093301 - Levosimendan Versus Dobutamine in Shock Patients Phase 2/Phase 3