View clinical trials related to Carcinoma, Islet Cell.
Filter by:This phase II trial studies regorafenib in treating patients with neuroendocrine tumors that have spread from the primary site (place where it started) to other places in the body. Regorafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This study is the first randomized, open-label, national, multicenter, phase II study assessing the efficacy and safety of OCLU in subjects with pretreated progressive pancreatic, inoperable, somatostatin receptor positive, well differentiated pancreatic neuroendocrine tumors (WDpNET). Subjects must have experienced documented progression of disease within 1 year prior to the start of the study. The control group of patients receiving Sutent will be used as internal control to assess the hypothesis of 12 months PFS equal to 35% in patients receiving Sutent.
This phase II trial studies how well dovitinib lactate works in treating patients with pancreatic neuroendocrine tumors. Dovitinib lactate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies ziv-aflibercept in treating and perfusion computed tomography perfusion imaging in predicting response in patients with pancreatic neuroendocrine tumors that have spread to other parts of the body or cannot be removed by surgery. Ziv-aflibercept may stop the growth of tumor cells by blocking blood flow to the tumor. Diagnostic procedures, such as computed tomography perfusion, imaging may help measure a patient's response to ziv-aflibercept treatment.
This randomized phase II trial studies how well everolimus works in treating patients with pancreatic neuroendocrine tumors metastatic to the liver previously treated with surgery. Everolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving everolimus after surgery may kill any tumors cells that remain.
This randomized phase II trial studies how well giving temozolomide with or without capecitabine works in treating patients with advanced pancreatic neuroendocrine tumors. Drugs used in chemotherapy, such as temozolomide and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether temozolomide is more effective with or without capecitabine in treating patients with advanced pancreatic neuroendocrine tumors.
The purpose of this research is to evaluate the effectiveness and safety of a combination of capecitabine, temozolomide and bevacizumab in the treatment of advanced pancreatic neuroendocrine tumors.
This phase I/II trial studies the side effects and best dose of temozolomide and pazopanib hydrochloride when given together and to see how well they work in treating patients with advanced pancreatic neuroendocrine tumors (PNET) that cannot be removed by surgery. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Pazopanib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for tumor growth. Giving temozolomide together with pazopanib hydrochloride may be an effective treatment for patients with PNET.
The main goal of this phase of the study is to determine if objectively assessed Physical Activity (PA) levels in advanced-cancer patients are associated with health care provider (HCP)-assessed ECOG performance status and overall survival. The purpose is to advance the evidence-base for incorporating objective assessment of Physical Activity (PA) in the context of performance status assessment in advanced cancer patients.
This phase I trial studies the side effects and best dose of cixutumumab when given together with everolimus and octreotide acetate in treating patients with advanced low- or intermediate-grade neuroendocrine cancer. Monoclonal antibodies, such as cixutumumab, may find tumor cells and help carry tumor-killing substances to them. Everolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Octreotide acetate may interfere with the growth of tumor cells and slow the growth of neuroendocrine cancer. Giving cixutumumab together with everolimus and octreotide acetate may be a better treatment for neuroendocrine cancer.