Clinical Trials Logo

Carcinoma, Endometrioid clinical trials

View clinical trials related to Carcinoma, Endometrioid.

Filter by:

NCT ID: NCT01440998 Completed - Clinical trials for Endometrial Adenocarcinoma

Dasatinib, Paclitaxel, and Carboplatin in Treating Patients With Stage III-IV or Recurrent Endometrial Cancer

Start date: September 20, 2011
Phase: Phase 1
Study type: Interventional

This pilot phase I trial studies how well dasatinib works together with paclitaxel and carboplatin in treating patients with stage III, stage IV, or endometrial cancer that has come back after a period of improvement. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as paclitaxel and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving dasatinib together with paclitaxel and carboplatin may kill more tumor cells.

NCT ID: NCT01294293 Completed - Clinical trials for Recurrent Ovarian Carcinoma

TLR8 Agonist VTX-2337 and Pegylated Liposomal Doxorubicin Hydrochloride or Paclitaxel in Treating Patients With Recurrent or Persistent Ovarian Epithelial, Fallopian Tube, or Peritoneal Cavity Cancer

Start date: March 2011
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of TLR8 agonist VTX-2337 and pegylated liposomal doxorubicin hydrochloride in treating patients with recurrent or persistent ovarian epithelial, fallopian tube, or peritoneal cavity cancer. Biological therapies, such as TLR8 agonist VTX-2337, may stimulate the immune system in different ways and stop tumor cells from growing. Drugs used in chemotherapy, such as pegylated liposomal doxorubicin hydrochloride and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving TLR8 agonist VTX-2337 together with pegylated liposomal doxorubicin hydrochloride or paclitaxel may kill more tumor cells.

NCT ID: NCT01210222 Completed - Clinical trials for Endometrial Adenocarcinoma

Trebananib in Treating Patients With Persistent or Recurrent Endometrial Cancer

Start date: June 6, 2011
Phase: Phase 2
Study type: Interventional

This phase II trial studies the side effects and how well trebananib works in treating patients with persistent or recurrent endometrial cancer. Trebananib may stop the growth of endometrial cancer by blocking blood flow to the tumor.

NCT ID: NCT01097746 Completed - Clinical trials for Primary Peritoneal Carcinoma

First-Line Treatment of Bevacizumab, Carboplatin, and Paclitaxel in Treating Participants With Stage III-IV Ovarian, Primary Peritoneal, and Fallopian Tube Cancer

Start date: April 14, 2010
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well first-line treatment of bevacizumab, carboplatin, and paclitaxel work in treating participants with stage III- IV ovarian, primary peritoneal and fallopian tube cancer. Monoclonal antibodies, such as bevacizumab, may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving bevacizumab, carboplatin, and paclitaxel as first-line treatment may work better at treating ovarian, primary peritoneal, and fallopian tube cancer.

NCT ID: NCT01080521 Completed - Clinical trials for Ovarian Endometrioid Adenocarcinoma

Changes in Brain Function in Patients With Stage I, Stage II, Stage III, or Stage IV Ovarian, Primary Peritoneal, or Fallopian Tube Cancer Who Are Receiving Chemotherapy

Start date: April 2010
Phase:
Study type: Observational

This clinical trial is studying changes in brain function in patients with stage I, stage II, stage III, or stage IV ovarian, primary peritoneal, or fallopian tube cancer who are receiving chemotherapy. Learning about the effects of chemotherapy on brain function may help doctors plan cancer treatments.

NCT ID: NCT01074411 Completed - Clinical trials for Recurrent Ovarian Carcinoma

Intraperitoneal Bortezomib and Carboplatin in Treating Patients With Persistent or Recurrent Ovarian Epithelial Cancer, Fallopian Tube Cancer, or Primary Peritoneal Cancer

Start date: April 5, 2010
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of intraperitoneal bortezomib when given together with intraperitoneal carboplatin in treating patients with ovarian epithelial cancer, fallopian tube cancer, or primary peritoneal cancer that is persistent or has come back. Bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Bortezomib may help carboplatin work better by making tumor cells more sensitive to the drug. Infusing bortezomib and carboplatin directly into the abdomen (intraperitoneal) may kill more tumor cells.

NCT ID: NCT01010126 Completed - Clinical trials for Recurrent Ovarian Carcinoma

Temsirolimus and Bevacizumab in Treating Patients With Advanced Endometrial, Ovarian, Liver, Carcinoid, or Islet Cell Cancer

Start date: September 8, 2009
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well temsirolimus and bevacizumab work in treating patients with advanced endometrial, ovarian, liver, carcinoid, or islet cell cancer. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of cancer by blocking blood flow to the tumor. Giving temsirolimus together with bevacizumab may kill more tumor cells.

NCT ID: NCT00993616 Completed - Clinical trials for Fallopian Tube Cancer

Belinostat and Carboplatin in Treating Patients With Recurrent or Persistent Ovarian Epithelial Cancer, Fallopian Tube Cancer, or Primary Peritoneal Cancer That Did Not Respond to Carboplatin or Cisplatin

Start date: December 2009
Phase: Phase 2
Study type: Interventional

This phase II trial is studying how well giving belinostat together with carboplatin works in treating patients with recurrent or persistent ovarian epithelial cancer, fallopian tube cancer, or primary peritoneal cancer that did not respond to carboplatin or cisplatin. Belinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. Drugs used in chemotherapy, such as carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving belinostat together with carboplatin may kill more tumor cells.

NCT ID: NCT00989651 Completed - Clinical trials for Primary Peritoneal Carcinoma

Carboplatin, Paclitaxel, Bevacizumab, and Veliparib in Treating Patients With Newly Diagnosed Stage II-IV Ovarian Epithelial, Fallopian Tube, or Primary Peritoneal Cancer

Start date: October 28, 2009
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of veliparib when given together with carboplatin, paclitaxel, and bevacizumab in treating patients with newly diagnosed stage II-IV ovarian epithelial, fallopian tube, or primary peritoneal cancer. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cells to repair themselves from damage and survive. Drugs used in chemotherapy, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Bevacizumab, a type of drug called a monoclonal antibody, blocks tumor growth by targeting certain cells and preventing the growth of new blood vessels that tumors need to grow. Giving veliparib together with carboplatin, paclitaxel, and bevacizumab may kill more tumor cells.

NCT ID: NCT00951496 Completed - Clinical trials for Ovarian Endometrioid Adenocarcinoma

Bevacizumab and Intravenous or Intraperitoneal Chemotherapy in Treating Patients With Stage II-III Ovarian Epithelial Cancer, Fallopian Tube Cancer, or Primary Peritoneal Cancer

Start date: August 11, 2009
Phase: Phase 3
Study type: Interventional

This randomized phase III trial studies bevacizumab and intravenous (given into a vein) chemotherapy to see how well they work compared with bevacizumab and intraperitoneal (given into the abdominal cavity) chemotherapy in treating patients with stage II-III ovarian epithelial cancer, fallopian tube cancer, or primary peritoneal cancer. Monoclonal antibodies, such as bevacizumab, can block the ability of tumor cells to grow and spread by blocking the growth of new blood vessels necessary for tumor growth. Drugs used in chemotherapy, such as paclitaxel, carboplatin, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. It is not yet known whether giving bevacizumab together with intravenous chemotherapy is more effective than giving bevacizumab together with intraperitoneal chemotherapy in treating patients with ovarian epithelial cancer, fallopian tube cancer, or primary peritoneal cancer.