Clinical Trials Logo

Clinical Trial Summary

The proposed study is aimed at examining mitochondrial function as a potential target of action of vitamin D on muscle metabolism, size, and strength in preventing the progression of cachexia. This is the first clinical trial designed to understand the effects of vitamin D on muscle metabolic dynamics driving dysfunction in cachectic muscle. Our preliminary data suggest that vitamin D promotes lipid partitioning and muscle metabolic function, which the investigators hypothesize, will mitigate cachexia via improved muscle health and quality that translates into reduced fatigue, and improved patient resilience to multimodal cancer therapy.


Clinical Trial Description

Vitamin D repletion is linked to improved muscle mitochondrial function, lipid deposition and preservation; however, while vitamin D insufficiency is common in cancer, the mechanistic effects of vitamin D on muscle metabolic health in cancer patients have not been studied. This is important to address because cancer cachexia is characterized by marked muscle wasting, anabolic resistance, ectopic fat infiltration, mitochondrial dysfunction and contributes to decreased survival. With novel strategies to address this knowledge gap, the investigators will use a combination of advanced metabolic analytical approaches with complementary model systems in cell culture and human subjects to understand the biochemical and physiological mechanisms underlying cancer cachexia in relation to the role of vitamin D in conjunction with resistance exercise (RE). By combining analyses of muscle size and local tissue hemodynamics in vivo, metabolomics analyses of muscle tissue and isolated mitochondria, and changes in anabolic cell signaling, lipid metabolism and oxidative capacity of primary muscle cells in vitro, the investigators will identify mechanisms underlying muscle response to vitamin D repletion. Our previous findings, together with data that exercise improves muscle vitamin D storage and retrieval, suggest that vitamin D repletion synergizes with RE to improve muscle metabolic function and protein synthesis. Our overall objective is to examine mitochondrial function and anabolic resistance as potential targets of action of vitamin D on muscle metabolism, size and strength in preventing the progression of cachexia. The aims of this study are to: 1) non-invasively quantify lipid redistribution, local muscle tissue metabolism and muscle mass and strength of cancer patients before and after 12 weeks of double blinded vitamin D repletion with exercise and protein supplementation (VitD) compared to exercise and protein supplementation only (Ctl); 2) determine differences in muscle mitochondrial function in live tissue biopsied from human gastrocnemius from VitD compared to Ctl; and 3) identify mechanisms whereby vitamin D and exercise regulate muscle anabolic signaling and mitochondrial activity in primary human myotube cultures. Our central hypothesis is that vitamin D promotes muscle lipid availability for β-oxidation in response to exercise, thereby preventing lipotoxicity in the muscle and potentially improving anabolic sensitivity in muscle during cancer cachexia. The impact of this project, the first nutrition and exercise study designed as an inexpensive intervention, is to understand the effect of vitamin D on the metabolic and anabolic dynamics which underpin dysfunction in cachectic muscle. If vitamin D promotes lipid partitioning, muscle metabolic function and/or anabolic sensitivity, these adaptations will ultimately improve cancer therapy by combating cancer cachexia. Further, diffuse optical spectroscopy techniques have the potential to identify the minimum effective intervention dose for optimizing metabolic health leading to more practical and individualized lifestyle prescriptions to reduce health care costs. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03144128
Study type Interventional
Source University of Kentucky
Contact
Status Completed
Phase N/A
Start date May 23, 2018
Completion date September 13, 2018

See also
  Status Clinical Trial Phase
Active, not recruiting NCT04244474 - Effect of Vitamin D Supplementation on Improvement of Pneumonic Children Phase 1/Phase 2
Recruiting NCT05459298 - ViDES Trial (Vitamin D Extra Supplementation) N/A
Suspended NCT03652987 - Endocrine and Menstrual Disturbances in Women With Polycystic Ovary Syndrome (PCOS)
Completed NCT04476511 - The Efficacy and the Safety of Vitamin D3 30,000 IU for Loading Dose Schedules Phase 3
Completed NCT03920150 - Vitamin D 24'000 IU for Oral Intermittent Supplementation Phase 3
Completed NCT03264625 - The Effects of Oral Vitamin D Supplementation on the Prevention of Peritoneal Dialysis-related Peritonitis Phase 2
Completed NCT04183257 - Effect of Escalating Oral Vitamin D Replacement on HOMA-IR in Vitamin D Deficient Type 2 Diabetics Phase 4
Recruiting NCT05084248 - Vitamin D Deficiency in Adults Following a Major Burn Injury Phase 4
Completed NCT05506696 - Vitamin D Supplementation Study N/A
Completed NCT00092066 - A Study to Evaluate the Safety, Tolerability, and Efficacy of an Investigational Drug and Dietary Supplement in Men and Postmenopausal Women With Osteoporosis (0217A-227) Phase 3
Completed NCT03234218 - Vitamin D Levels in Liver Transplantation Recipients Prospective Observational Study
Completed NCT02906319 - Vitamin D and HbA1c Levels in Diabetic Patients With CKD N/A
Completed NCT02714361 - A Study to Investigate the Effect of Vitamin D3 Supplementation on Iron Status in Iron Deficient Women N/A
Completed NCT03203382 - Corneal Nerve Structure in Sjogren's
Completed NCT02118129 - Vitamin D Among Young Adults: an Intervention Study Using a Mobile 'App'. N/A
Not yet recruiting NCT01419821 - Vitamin D and Its Affect on Growth Rates and Bone Mineral Density Until Age 5 N/A
Completed NCT02275650 - The Role of Narrowband Ultraviolet B Exposure in the Maintenance of Vitamin D Levels During Winter N/A
Completed NCT02187146 - The Effects of Serum Vitamin D and IVF Outcome N/A
Completed NCT01651000 - Safety and Efficacy of CTAP101 to Treat Secondary Hyperparathyroidism in Stage 3 or 4 CKD and Vitamin D Insufficiency Phase 3
Completed NCT01688102 - The Effect of Oral Vitamin D Versus Narrow-Band UV-B Exposure on the Lipid Profile N/A