Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT02315547
Other study ID # GIRD-20141208-GWJ
Secondary ID
Status Recruiting
Phase N/A
First received
Last updated
Start date January 2015
Est. completion date December 2023

Study information

Verified date July 2019
Source Guangzhou Institute of Respiratory Disease
Contact Wei-jie Guan, Ph.D.
Phone +86-13826042052
Email battery203@163.com
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Study 1 is a cross-sectional investigation. Patients with clinically stable bronchiectasis (symptoms, including cough frequency, sputum volume and purulence, within normal daily variations) will undergo baseline assessment consisting of history taking, routine sputum culture, 16srRNA pyrosequencing, measurement of sputum inflammatory markers, oxidative stress biomarkers and MMPs, and spirometry. Microbiota taxa will be compared between bronchiectasis patients and healthy subjects.

In study 2, patients inform investigators upon symptom deterioration. Following diagnosis of BEs, patients will undergo the aforementioned assessments as soon as possible. This entails antibiotic treatment, with slightly modified protocol, based on British Thoracic Society guidelines [16]. At 1 week after completion of 14-day antibiotic therapy, patients will undergo convalescence visit.

Study 3 is a prospective 1-year follow-up scheme in which patients participated in telephone or hospital visits every 3 months. For individual visit, spirometry and sputum culture will be performed, and BEs will be meticulously captured from clinical charts and history inquiry, with the final decisions adjudicated following group discussion.


Description:

Bronchiectasis is a chronic airway disease characterized by airway infection, inflammation and destruction [1]. Bacteria are frequently responsible for the vicious cycle seen in bronchiectasis. Clinically, potentially pathogenic microorganisms (PPMs) primarily consisted of Hemophilus influenzae, Hemophilus parainfluenzae, Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae and Moraxella catarrhalis [1]. These PPMs elicit airway inflammation [2-5] and biofilm formation [6] leading to and oxidative stress [7,8]. However, different PPMs harbor varying effects on bronchiectasis. For instance, P. aeruginosa has been linked to more pronounced airway inflammation and poorer lung function [9,10].

However, it should be recognized that routine sputum bacterial culture techniques could only effectively identify a small proportion of PPMs. The assay sensitivity and specificity could be significantly affected by the duration from sampling to culture, the culture media and environment. Pyrosequencing of the bacterial 16srRNA might offer more comprehensive assessment of the airway microbiota. Based on this technique, Goleva and associates [11] identified an abundance of gram-negative microbiota (predominantly the phylum proteobacteria) which might be responsible for corticosteroid insensitivity. The microbiome of airways in patients with asthma [11,12], idiopathic pulmonary fibrosis [13] and bronchiectasis [14,15] has also been characterized. Furthermore, the association between the "core microbiota" and clinical parameters (i.e., FEV1) has been demonstrated. However, previous studies suffered from relatively small sample size and lack of comprehensive sets of clinical parameters for further analyses.

Bronchiectasis exacerbations (BEs) are characterized by significantly worsened symptoms and (or) signs that warrant antibiotics therapy. The precise mechanisms responsible for triggering BEs have not been fully elucidated, but could be related to virus infection and increased bacterial virulence. However, it should be recognized that antibiotics, despite extensive bacterial resistance, remain effective for most BEs. This at least partially suggested that bacterial infection might have played a major role in the pathogenesis of BEs. Therefore, the assessment of sputum microbiota during steady-state, BEs and convalescence may unravel more insights into the dynamic variation in microbiota compositions and the principal microbiota phylum or species that account for BEs.

In the this study, the investigators seek to perform 16srRNA pyrosequencing to determine: 1) the differences in microbiota compositions between bronchiectasis patients and healthy subjects; 2) association between sputum microbiota compositions and clinical parameters, including systemic/airway inflammation, spirometry, disease severity, airway oxidative stress biomarkers and matrix metalloproteinase; 3) the microbiota compositions in patients who yielded "normal flora (commensals)", in particular those who produced massive sputum daily (>50ml/d); 4) dynamic changes in microbiota compositions during BEs and convalescence as compared with baseline levels; 5) the utility of predominant microbiota taxa in predicting lung function decline and future risks of BEs during 1-year follow-up.


Recruitment information / eligibility

Status Recruiting
Enrollment 120
Est. completion date December 2023
Est. primary completion date December 2023
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years to 85 Years
Eligibility Inclusion Criteria:

- Patients of either sex and age between 18 and 85 years

Exclusion Criteria:

1. Patient judged to have poor compliance

2. Female patient who is lactating or pregnant

3. Patients having concomitant severe systemic illnesses (i.e. coronary heart disease, cerebral stroke, uncontrolled hypertension, active gastric ulcer, malignant tumor, hepatic dysfunction, renal dysfunction)

4. Miscellaneous conditions that would potentially influence efficacy assessment, as judged by the investigators

5. Participation in another clinical trial within the preceding 3 months

Inclusion criteria for healthy subjects include all of the above criteria except for known respiratory diseases

It is estimated that 120 patients will be recruited in the study. Some of the patients in the BISER study (currently still ongoing, No.: NCT01761214) who are eligible for the current study will undergo assessments de novo, with the index date deemed as the the date of recruitment

Study Design


Related Conditions & MeSH terms


Intervention

Drug:
Antibiotics
Patients will be given antibiotics based on sputum microbiology during steady-state bronchiectasis. The methodology has been described in the British Thoracic Society guideline [16]. Briefly, for first-line therapy, patients isolated with Hemophilus influenzae, Hemophilus parainfluenzae, Streptoccus pneumoniae and Moraxella catarrhalis at baseline will be treated with amoxicillin clavulanate potassium (625mg bid); patients isolated with Klebsela pneumonae or Pseudomonas aeruginosa at baseline will be treated with fluoroquinolones. Levofloxacin (500mg qd) will be empirically employed for antibiotic treatment in those who tested negative to sputum microbiology. Severe BEs could be prescribed with intravenous antibiotics therapy at the discretion of study investigators, either in the out-patient department or hospitalized for intensive systemic treatment. Hospitalized patients will not be included in the exacerbation cohort.

Locations

Country Name City State
China Guangzhou Institute of Respiratory Disease Guangzhou Guangdong

Sponsors (1)

Lead Sponsor Collaborator
Guangzhou Institute of Respiratory Disease

Country where clinical trial is conducted

China, 

References & Publications (20)

Angrill J, Agustí C, De Celis R, Filella X, Rañó A, Elena M, De La Bellacasa JP, Xaubet A, Torres A. Bronchial inflammation and colonization in patients with clinically stable bronchiectasis. Am J Respir Crit Care Med. 2001 Nov 1;164(9):1628-32. — View Citation

Chalmers JD, Goeminne P, Aliberti S, McDonnell MJ, Lonni S, Davidson J, Poppelwell L, Salih W, Pesci A, Dupont LJ, Fardon TC, De Soyza A, Hill AT. The bronchiectasis severity index. An international derivation and validation study. Am J Respir Crit Care Med. 2014 Mar 1;189(5):576-85. doi: 10.1164/rccm.201309-1575OC. — View Citation

Chmiel JF, Davis PB. State of the art: why do the lungs of patients with cystic fibrosis become infected and why can't they clear the infection? Respir Res. 2003;4:8. Epub 2003 Aug 27. Review. — View Citation

Davies G, Wells AU, Doffman S, Watanabe S, Wilson R. The effect of Pseudomonas aeruginosa on pulmonary function in patients with bronchiectasis. Eur Respir J. 2006 Nov;28(5):974-9. Epub 2006 Aug 9. — View Citation

Evans SA, Turner SM, Bosch BJ, Hardy CC, Woodhead MA. Lung function in bronchiectasis: the influence of Pseudomonas aeruginosa. Eur Respir J. 1996 Aug;9(8):1601-4. — View Citation

Fodor AA, Klem ER, Gilpin DF, Elborn JS, Boucher RC, Tunney MM, Wolfgang MC. The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations. PLoS One. 2012;7(9):e45001. doi: 10.1371/journal.pone.0045001. Epub 2012 Sep 26. — View Citation

Garzoni C, Brugger SD, Qi W, Wasmer S, Cusini A, Dumont P, Gorgievski-Hrisoho M, Mühlemann K, von Garnier C, Hilty M. Microbial communities in the respiratory tract of patients with interstitial lung disease. Thorax. 2013 Dec;68(12):1150-6. doi: 10.1136/thoraxjnl-2012-202917. Epub 2013 Aug 14. — View Citation

Goleva E, Jackson LP, Harris JK, Robertson CE, Sutherland ER, Hall CF, Good JT Jr, Gelfand EW, Martin RJ, Leung DY. The effects of airway microbiome on corticosteroid responsiveness in asthma. Am J Respir Crit Care Med. 2013 Nov 15;188(10):1193-201. doi: 10.1164/rccm.201304-0775OC. — View Citation

Horvath I, Loukides S, Wodehouse T, Kharitonov SA, Cole PJ, Barnes PJ. Increased levels of exhaled carbon monoxide in bronchiectasis: a new marker of oxidative stress. Thorax. 1998 Oct;53(10):867-70. — View Citation

King PT, Hutchinson PE, Johnson PD, Holmes PW, Freezer NJ, Holdsworth SR. Adaptive immunity to nontypeable Haemophilus influenzae. Am J Respir Crit Care Med. 2003 Feb 15;167(4):587-92. Epub 2002 Nov 14. — View Citation

Laszlo G. Standardisation of lung function testing: helpful guidance from the ATS/ERS Task Force. Thorax. 2006 Sep;61(9):744-6. — View Citation

Marri PR, Stern DA, Wright AL, Billheimer D, Martinez FD. Asthma-associated differences in microbial composition of induced sputum. J Allergy Clin Immunol. 2013 Feb;131(2):346-52.e1-3. doi: 10.1016/j.jaci.2012.11.013. Epub 2012 Dec 23. — View Citation

Pasteur MC, Bilton D, Hill AT; British Thoracic Society Bronchiectasis non-CF Guideline Group. British Thoracic Society guideline for non-CF bronchiectasis. Thorax. 2010 Jul;65 Suppl 1:i1-58. doi: 10.1136/thx.2010.136119. Review. — View Citation

Pasteur MC, Helliwell SM, Houghton SJ, Webb SC, Foweraker JE, Coulden RA, Flower CD, Bilton D, Keogan MT. An investigation into causative factors in patients with bronchiectasis. Am J Respir Crit Care Med. 2000 Oct;162(4 Pt 1):1277-84. — View Citation

Rogers GB, van der Gast CJ, Cuthbertson L, Thomson SK, Bruce KD, Martin ML, Serisier DJ. Clinical measures of disease in adult non-CF bronchiectasis correlate with airway microbiota composition. Thorax. 2013 Aug;68(8):731-7. doi: 10.1136/thoraxjnl-2012-203105. Epub 2013 Apr 6. — View Citation

Ryall B, Davies JC, Wilson R, Shoemark A, Williams HD. Pseudomonas aeruginosa, cyanide accumulation and lung function in CF and non-CF bronchiectasis patients. Eur Respir J. 2008 Sep;32(3):740-7. doi: 10.1183/09031936.00159607. Epub 2008 May 14. — View Citation

Sadikot RT, Blackwell TS, Christman JW, Prince AS. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med. 2005 Jun 1;171(11):1209-23. Epub 2005 Feb 1. Review. — View Citation

Starner TD, Zhang N, Kim G, Apicella MA, McCray PB Jr. Haemophilus influenzae forms biofilms on airway epithelia: implications in cystic fibrosis. Am J Respir Crit Care Med. 2006 Jul 15;174(2):213-20. Epub 2006 May 4. — View Citation

Tunney MM, Einarsson GG, Wei L, Drain M, Klem ER, Cardwell C, Ennis M, Boucher RC, Wolfgang MC, Elborn JS. Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am J Respir Crit Care Med. 2013 May 15;187(10):1118-26. doi: 10.1164/rccm.201210-1937OC. — View Citation

Zheng J, Zhong N. Normative values of pulmonary function testing in Chinese adults. Chin Med J (Engl). 2002 Jan;115(1):50-4. — View Citation

* Note: There are 20 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary relative abundance, diversity and richness of microbiota taxa Sputum microbiota taxa compositions (at phylum and species levels, respectively), including the relative abundance, diversity and richness Jan 2015 to Dec 2017, up to 3 years
Secondary Serum inflammatory indices IL-8, TNF-a, WBC and CRP Jan 2015 to Dec 2017, up to 3 years
Secondary Sputum sol phase inflammatory biomarkers IL-8 and TNF-a Jan 2015 to Dec 2017, up to 3 years
Secondary Sputum sol phase oxidative stress biomarkers or parameters CAT, hydrogen peroxide, superoxide dismutase, MDA Jan 2015 to Dec 2017, up to 3 years
Secondary Sputum sol phase matrix metalloproteinases MMP-8, MMP-9, TIMP-1, MMP-9/TIMP-1 ratio Jan 2015 to Dec 2017, up to 3 years
Secondary 24-hour sputum volume 24-hour sputum volume, measured to the nearest 5 ml Jan 2015 to Dec 2017, up to 3 years
Secondary Spirometry FEV1, FVC, FEV1/FVC, MMEF Jan 2015 to Dec 2017, up to 3 years
Secondary Bronchiectasis Severity Index Jan 2015 to Dec 2017, up to 3 years
Secondary Sputum culture findings normally reported as growth of a predominant potentially pathogenic microorganism or no bacterial growth Jan 2015 to Dec 2017, up to 3 years
Secondary Sputum purulence scale 1 to 8 Jan 2015 to Dec 2017, up to 3 years
Secondary SGRQ total score and the scores of individual domains SGRQ total score and the scores of individual domains Jan 2015 to Dec 2017, up to 3 years
See also
  Status Clinical Trial Phase
Completed NCT05034900 - Does Addition of Oscillatory Positive Expiratory Pressure (OPEP) Device to a Chest Physiotherapy Program Provide Further Health Benefits in Children With Bronchiectasis? N/A
Recruiting NCT04101448 - Prevalence of Bronchiectasis in COPD Patients
Withdrawn NCT03376204 - Pain Mechanisms in Patients With Bronchiectasis
Completed NCT02550821 - Comparison of Physical Activity Level Between Patients With Bronchiectasis and Healthy Subjects
Completed NCT02656992 - Effects of High Intensity Inspiratory Muscle Training on Exercise Capacity in Patients With Bronchiectasis N/A
Completed NCT02282202 - Evaluation of Oscillatory Positive Expiratory Pressure (oPEP) in Bronchiectasis and COPD N/A
Completed NCT01615484 - Ex-vivo Perfusion and Ventilation of Lungs Recovered From Non-Heart-Beating Donors to Assess Transplant Suitability N/A
Completed NCT02048397 - Pulmonary Rehabilitation Program (PRP) Versus PRP Plus Nutritional Supplementation in Patients With Bronchiectasis N/A
Recruiting NCT01761214 - Bacteriology and Inflammation in Bronchiectasis N/A
Recruiting NCT02527486 - Seoul National University Airway Registry N/A
Completed NCT01578681 - ELTGOL and Bronchiectasis. Respiratory Therapy N/A
Completed NCT01854788 - 3 Airway Clearance Techniques in Non Cystic Fibrosis Bronchiectasis N/A
Completed NCT00769119 - A Phase II , Placebo-controlled Study to Assess Efficacy of 28 Day Oral AZD9668 in Patients With Bronchiectasis Phase 2
Terminated NCT00524095 - Bronchiectasis in Chronic Obstructive Pulmonary Disease (COPD) Patients: Role of Prophylaxis Phase 2
Completed NCT01117493 - Expert Patient Self-management Programme Versus Usual Care in Bronchiectasis N/A
Recruiting NCT00129350 - Assessment of Heart and Heart-Lung Transplant Patient Outcomes Following Pulmonary Rehabilitation Phase 1
Completed NCT00656721 - Respiratory Mechanics Effects of Flutter Valve in Bronchiectasis Patients N/A
Completed NCT04081740 - Biological Determinants of Sputum Rheology in Chronic Airway Diseases
Enrolling by invitation NCT02546297 - Comparisons of Inhaled LAMA or LAMA+LABA or ICS+LABA for COPD With Bronchiectasis Phase 4
Completed NCT03628456 - Effect of HFCWO Vests on Spirometry Measurements N/A