Clinical Trials Logo

Clinical Trial Summary

The goal of the present pilot single-cohort feasibility trial is to investigate the feasibility and understand potential mechanisms of efficacy for Neuromodulation-Induced Cortical Prehabilitation (NICP) in adults with brain tumours and eligible for neurosurgery. The main questions it aims to answer are: - is the intervention feasible, in terms of adherence, retention, safety and patient's satisfaction; - what are the mechanisms of neuroplasticity primed by NICP Participants will undergo a prehabilitation protocol, consisting of daily sessions (total: 10-20 sessions) structured as follows: - Intervention 1: non-invasive neuromodulation (TMS/tDCS). - Intervention 2: motor and/or cognitive training, during or immediately after non-invasive neuromodulation, for about 60 minutes. The timeline is structured as follows: T1: baseline (before NICP) T2-T3: NICP period T4: after NICP T5: surgery T6: after surgery Clinical, neuroimaging and neurophysiology assessments will be performed before NICP (T1), after NICP (T4), and after neurosurgery (T6). Feasibility outcomes will be determined during NICP protocol (T2-T3). The objective of the proposed intervention is to progressively reduce the functional relevance of eloquent areas, which are healthy brain areas close with the tumour and thus exposed to the risk of being lesioned during surgery. In fact, previous studies have shown that temporary inhibition of eloquent areas (by neuromodulation) coupled with intensive motor/cognitive training promoted the activation of alternative brain resources, with a shift of functional activity from eloquent areas to areas functionally related, but anatomically distant from the tumour. By moving the activation of key motor/cognitive functions away from the tumour, the risk of postoperative functional sequelae will be reduced; which in turn will falicitate a more radical tumour excision by the neurosurgeon.


Clinical Trial Description

Neuromodulation-Induced Cortical Prehabilitation (NICP) is a relatively new approach in the neurosurgical field. It consists of priming neuroplastic changes before neurosurgery for brain tumours, in order to improve surgical outcomes and, hopefully, long-term survival and quality of life. The intervention comprises two elements: 1. Neuromodulation (like transcranial magnetic stimulation, TMS, and transcranial direct current stimulation, tDCS). The goal of neuromodulation is to inhibit the eloquent areas, defined as brain areas functionally active and close to the tumour. 2. Behavioural training (like motor training, cognitive training, or a combination). The function trained corresponds with the function of the eloquent area targeted by neuromodulation. The two interventions are provided on a daily basis, and repeated over 10-20 consecutive weekdays. Notably, after the inhibition of the eloquent area there is a temporal window of about one hour, where intensive training of the same function requires the activation of alternative areas/pathways. By consolidating this alternative activation over multiple sessions, the outcome is a reduction in the functional relevance of eloquent areas, in favour of alternative resources anatomically distant from the tumour. Only few case reports have been published so far, with very positive results obtained by means of invasive neuromodulation; the term 'invasive' means that a first neurosurgery was required to implant electrodes over eloquent areas for intracranial electrical stimulation, followed after few days/weeks by a second surgery for tumour removal. Despite relevant neuroplastic changes, the problem with this approach has been the high rate of adverse events occurred (infections, edema, pain, seizure) due to the invasiveness of the procedures. Therefore, by using a non-invasive neuromodulation approach, the goal of the present trial is to promote neuroplastic changes beneficial for neurosurgery, while at the same time ensuring no serious adverse events. Further details on neuromodulation. Investigators will apply the most appropriate neuromodulation protocol, personalized based on whether to perform TMS and/or tDCS, individual resting motor threshold (for TMS), and target determination (related to eloquent areas). Protocol for low frequency rTMS: - intensity: 90% RMT; - frequency: 1 Hertz; - total number of pulses: 1600. Protocol for tDCS: - cathode: over eloquent areas - anode: typically over areas that should be activated, as opposed to eloquent areas Further details on upper limb prehabilitation training. Within the 60 minutes immediately after neuromodulation, patients will perform an intensive training of the same function of the eloquent area, which is now temporarily inhibited. Intensity of the training will be continuously adjusted in terms of type, difficulty and variability: - Type: exercises specific for finger individuation (play the piano, typewriting), finger coordination (dexterity, manipulation), arm reaching. In order to integrate upper limb function with other motor-cognitive functions, dual task training will be performed, both motor-cognitive (decision making, stroop task, motor sequence learning etc.) and motor-motor (bimanual activites, arm and balance tasks, etc.); - Difficulty: the intensity of the exercise will be set as to result 'difficult, yet achievable' by the patient. This way it is ensured that the brain is under a stress condition which, together with concurrent eloquent area inhibition, will promote and consolidate the activation of alternative resources. - Variability: varying systematically the type and difficulty of the training is useful to keep the patient engaged and ensure that the end result will be a global motor-cognitive training, instead of a monotonic improvement in a specific performance. Further details on Prehabilitation for language and cognitive training. Language-cognitive training will follow the same rationale illustrated for motor training. Soon after neuromodulation the patient will perform a computerized cognitive training on a dedicated platform ("Guttmann NeuroPersonalTrainer"® (GNPT). Exercises will be customized based on specific patient's deficits, and/or functions at risk of being compromised after surgery. For instance, the neuropsychologist may vary settings such as presentation speed, latency time or number of images, thus finely tuning several difficulty levels. Regarding language, tasks will be planned and supervised in a personalized way by a neuropsychologist, readjusting their planning if necessary. Discontinuation, adherence, and permission for concomitant care. The intervention will be discontinued in the following cases: - participant's request; - serious adverse events attributable to the intervention. Patients will be allowed to continue any ongoing treatment. Formal training of motor-cognitive functions outside the protocol will be discourage, as it may affect neuroplastic changes in an unpredictable way. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05844605
Study type Interventional
Source Institut Guttmann
Contact Jose M Tormos Muñoz, PhD
Phone 0034686940393
Email jmtormos@guttmann.com
Status Recruiting
Phase Phase 1
Start date June 21, 2021
Completion date December 31, 2025

See also
  Status Clinical Trial Phase
Recruiting NCT05023434 - A Study to Measure the Effect of Brain Stimulation on Hand Strength and Function in Patients With Brain Tumors
Completed NCT04474678 - Quality Improvement Project - "My Logbook! - I Know my Way Around!"; ("Mein Logbuch - Ich Kenne Mich Aus!") N/A
Completed NCT02768389 - Feasibility Trial of the Modified Atkins Diet and Bevacizumab for Recurrent Glioblastoma Early Phase 1
Terminated NCT01902771 - Dendritic Cell Vaccine Therapy With In Situ Maturation in Pediatric Brain Tumors Phase 1
Recruiting NCT03175224 - APL-101 Study of Subjects With NSCLC With c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors Phase 2
Recruiting NCT03286335 - Local Control, Quality of Life and Toxicities in Adults With Benign or Indolent Brain Tumors Undergoing Proton Radiation Therapy N/A
Recruiting NCT05968053 - Detection of Microplastics and Nanoplastics in Neurosurgery Patients (DT-MiNi)
Recruiting NCT05358340 - Dual Perfusion Imaging for Characterizing Vascular Architecture of Brain Lesions N/A
Terminated NCT03276676 - [18F]Fluciclovine and [18F]FLT PET/CT Assessment of Primary High-Grade Brain Tumors Phase 2
Completed NCT02851355 - Follow-up Survey of Patients Who Were Treated for Medulloblastoma or Primitive Neuroectodermal Tumors of the Central Nervous in Norway
Completed NCT02409121 - A Novel Health Information Technology System (BMT Roadmap) for Pediatric BMT Patients and Caregivers N/A
Completed NCT02713087 - Vasopressor Effects in Anesthetized Patients Phase 4
Completed NCT02558569 - The Use of Fentanyl in General Anesthesia for Craniotomy With or Without 0.5% Levobupivacaine Scalp Block Phase 4
Terminated NCT02674945 - Understanding and Improving Quality of Life Through a Wireless Activity Tracker: Observational Phase
Withdrawn NCT02165995 - Use of Navigated Transcranial Magnetic Stimulation (nTMS) in Generated Motor and Language Mapping to Evaluate Brain Recovery Following Surgery N/A
Withdrawn NCT01202539 - Real-time Assessment of Frameless Intrafraction Motion
Completed NCT01171469 - Vaccination With Dendritic Cells Loaded With Brain Tumor Stem Cells for Progressive Malignant Brain Tumor Phase 1
Terminated NCT01044966 - A Study of Intraventricular Liposomal Encapsulated Ara-C (DepoCyt) in Patients With Recurrent Glioblastoma Phase 1/Phase 2
Completed NCT00760409 - Differentiating Recurrent Brain Tumor Versus Radiation Injury Using MRI N/A
Completed NCT00503204 - Phase I : Cediranib in Combination With Lomustine Chemotherapy in Recurrent Malignant Brain Tumour Phase 1