Clinical Trials Logo

Clinical Trial Summary

The hypothesis of this exploratory clinical trial in patients with high-grade a primary brain tumor who receive chemoradiation is that the PET imaging agents [18F]Fluciclovine and/or [18F]FLT will be a better predictor of tumor response than standard MRI based brain tumor response criteria. When used in conjunction, the two PET agents may be better able to predict tumor aggressiveness and thus overall survival than the use of individual-tracer PET biomarkers. This may eventually lead to improved assessment of response (including time to progression and overall survival) and differentiation of tumor recurrence/progression from treatment effect (pseudoprogression).


Clinical Trial Description

The standard treatment approach for patients with high-grade primary brain tumors includes maximum feasible surgical resection, followed by 6 weeks of concurrent cranial irradiation, and daily low-dose temozolomide chemotherapy; followed by 12 cycles of high-dose temozolomide administered for 5 consecutive days every 4 weeks (Stupp et al., 2005). Contrast-enhanced MRI is the current standard for evaluating the success of therapy and monitoring for tumor recurrence. MRI is typically obtained prior to initial surgery, within 24 hours after surgery, at the conclusions of cranial irradiation, and then every 8 weeks during temozolomide chemotherapy until evidence of recurrence. Despite this careful clinical and radiographic surveillance, and despite decades of research into the histologic and molecular classification of primary brain tumors, our ability to predict tumor behavior remains very limited. Some gliomas will result in overall survival times of only months, whereas other histologically-identical gliomas may yield survivals of years to decades (Curran et al., 1993, Carson et al., 2007). Current assessment of tumor response to therapy is also poor. Patients with complete radiographic response after cranial irradiation often progress rapidly post-irradiation. In contrast, some patients with enhancing masses at the end of chemoradiotherapy may respond dramatically to further chemotherapy alone; or the masses may even disappear in the absence of further therapy, so called "tumor pseudoprogression" (Chamberlain et al., 2007). This confounding situation demonstrates a need for better assessment of tumor response. Improvements in the ability to predict tumor behavior prior to the start of therapy would allow more efficient and effective tumor surveillance; better prognostication; and more appropriate assignment of patients to conventional, aggressive, or investigational therapies early in their clinical courses. This would provide huge economic and social benefits, and could afford decisive insights into brain tumor physiology and biology. Similarly, the ability to identify, earlier and more accurately, whether individual patients were responding to therapy would allow prompt discontinuation of ineffectual treatments and institution of potentially more effective therapies. Previous efforts using imaging for such tasks have generally been limited to a single modality (e.g. MRI) and/or single-tracer (e.g. FDG-PET). However, there is a significant and growing body of evidence that complementary imaging of multiple aspects of tumor physiology (i.e. using multiple PET tracers) can provide greatly enhanced information over imaging with a single modality or tracer alone. In solid tumors, complex interactions exist between blood flow, metabolic activity, and oxygen status which affect metastatic and proliferative activity. Heterogeneous tumors may contain both slow-growing and fast-growing regions that present different profiles of proliferation rates and amino acid uptake. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03276676
Study type Interventional
Source University of Utah
Contact Sam Mitchell
Phone 801-213-6110
Email sam.mitchell@hci.utah.edu
Status Recruiting
Phase Phase 2
Start date September 24, 2018
Completion date September 15, 2024

See also
  Status Clinical Trial Phase
Recruiting NCT05023434 - A Study to Measure the Effect of Brain Stimulation on Hand Strength and Function in Patients With Brain Tumors
Completed NCT04474678 - Quality Improvement Project - "My Logbook! - I Know my Way Around!"; ("Mein Logbuch - Ich Kenne Mich Aus!") N/A
Completed NCT02768389 - Feasibility Trial of the Modified Atkins Diet and Bevacizumab for Recurrent Glioblastoma Early Phase 1
Terminated NCT01902771 - Dendritic Cell Vaccine Therapy With In Situ Maturation in Pediatric Brain Tumors Phase 1
Recruiting NCT03175224 - APL-101 Study of Subjects With NSCLC With c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors Phase 2
Recruiting NCT03286335 - Local Control, Quality of Life and Toxicities in Adults With Benign or Indolent Brain Tumors Undergoing Proton Radiation Therapy N/A
Recruiting NCT05968053 - Detection of Microplastics and Nanoplastics in Neurosurgery Patients (DT-MiNi)
Recruiting NCT05358340 - Dual Perfusion Imaging for Characterizing Vascular Architecture of Brain Lesions N/A
Completed NCT02851355 - Follow-up Survey of Patients Who Were Treated for Medulloblastoma or Primitive Neuroectodermal Tumors of the Central Nervous in Norway
Completed NCT02409121 - A Novel Health Information Technology System (BMT Roadmap) for Pediatric BMT Patients and Caregivers N/A
Completed NCT02558569 - The Use of Fentanyl in General Anesthesia for Craniotomy With or Without 0.5% Levobupivacaine Scalp Block Phase 4
Completed NCT02713087 - Vasopressor Effects in Anesthetized Patients Phase 4
Terminated NCT02674945 - Understanding and Improving Quality of Life Through a Wireless Activity Tracker: Observational Phase
Withdrawn NCT02165995 - Use of Navigated Transcranial Magnetic Stimulation (nTMS) in Generated Motor and Language Mapping to Evaluate Brain Recovery Following Surgery N/A
Completed NCT01171469 - Vaccination With Dendritic Cells Loaded With Brain Tumor Stem Cells for Progressive Malignant Brain Tumor Phase 1
Withdrawn NCT01202539 - Real-time Assessment of Frameless Intrafraction Motion
Terminated NCT01044966 - A Study of Intraventricular Liposomal Encapsulated Ara-C (DepoCyt) in Patients With Recurrent Glioblastoma Phase 1/Phase 2
Completed NCT00760409 - Differentiating Recurrent Brain Tumor Versus Radiation Injury Using MRI N/A
Completed NCT00503204 - Phase I : Cediranib in Combination With Lomustine Chemotherapy in Recurrent Malignant Brain Tumour Phase 1
Terminated NCT00512460 - RTA 744 Injection in Patients With Leptomeningeal Disease Phase 1