Brain Tumor Clinical Trial
Official title:
Comparison of Dexmedetomidine and Propofol-Remifentanil Conscious Sedation for Awake Craniotomy for Tumor Surgery: a Randomized Controlled Trial
Verified date | July 2016 |
Source | University Health Network, Toronto |
Contact | n/a |
Is FDA regulated | No |
Health authority | Canada: Health Canada |
Study type | Interventional |
Awake craniotomy for resection of brain tumor located in close proximity to areas of
eloquent brain function, such as speech, motor and sensory, is an accepted procedure used to
minimize neurological injury during resection. During awake craniotomy, anesthesia is
usually provided using a combination of local anesthesia (regional scalp block and/or local
infiltration) and intravenous (IV) agents to provide sedation, anxiolysis and analgesia.
Propofol sedation, commonly in combination with a shorter acting opioid such as fentanyl, or
remifentanil, is an effective and popular technique during awake craniotomy, achieving a
high degree of patient satisfaction and acceptance. Most of the anesthetic agents are
associated with some respiratory depression.
The anesthetic agent called dexmedetomidine is a potent, highly selective α2-adrenoceptor
agonist. The effects of dexmedetomidine are anxiolysis, analgesia, sedation and
sympatholysis, and it is not associated with respiratory depressive effect. Bekker et al.
first reported the successful use of dexmedetomidine in awake craniotomy in 2001.
The purpose of this blinded, prospective, randomized study is to compare the efficacy of
dexmedetomidine versus propofol-remifentanil based sedation in patients undergoing awake
craniotomy for resection of tumors. The study hypothesis is that the efficacy of performing
intra-operative brain mapping is identical between dexmedetomidine and the
propofol-remifentanil based sedation. The primary end-points are to assess the ability to
perform intraoperative mapping during awake craniotomy. Secondary end-points will assess the
incidence of complications (respiratory depression, failure to provide adequate analgesia),
as well as patient and surgeon satisfaction to the corresponding anesthetic technique.
Status | Completed |
Enrollment | 50 |
Est. completion date | December 2014 |
Est. primary completion date | December 2014 |
Accepts healthy volunteers | No |
Gender | Both |
Age group | 18 Years and older |
Eligibility |
Inclusion Criteria: - Adult patients more than 18 years of age. - ASA score I, II and III. - Patients scheduled to undergo awake craniotomy for elective tumor resection. Exclusion Criteria: - Patients with allergies to the drugs being used. - Patients who are pregnant. - Patients with alcohol or substance abuse. - Patients who are not able to understand the instructions for an awake craniotomy and questions regarding intra-operative pain, and post-operative satisfaction. - Lack of informed consent. |
Allocation: Randomized, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Parallel Assignment, Masking: Double Blind (Subject, Caregiver, Outcomes Assessor), Primary Purpose: Treatment
Country | Name | City | State |
---|---|---|---|
Canada | UHN Toronto Western Hospital | Toronto | Ontario |
Lead Sponsor | Collaborator |
---|---|
Nicolai Goettel |
Canada,
Bamgbade OA, Alfa JA. Dexmedetomidine anaesthesia for patients with obstructive sleep apnoea undergoing bariatric surgery. Eur J Anaesthesiol. 2009 Feb;26(2):176-7. doi: 10.1097/EJA.0b013e32831a47cb. — View Citation
Bekker AY, Kaufman B, Samir H, Doyle W. The use of dexmedetomidine infusion for awake craniotomy. Anesth Analg. 2001 May;92(5):1251-3. — View Citation
Berkenstadt H, Perel A, Hadani M, Unofrievich I, Ram Z. Monitored anesthesia care using remifentanil and propofol for awake craniotomy. J Neurosurg Anesthesiol. 2001 Jul;13(3):246-9. — View Citation
Bhana N, Goa KL, McClellan KJ. Dexmedetomidine. Drugs. 2000 Feb;59(2):263-8; discussion 269-70. — View Citation
Blanshard HJ, Chung F, Manninen PH, Taylor MD, Bernstein M. Awake craniotomy for removal of intracranial tumor: considerations for early discharge. Anesth Analg. 2001 Jan;92(1):89-94. — View Citation
Chawla S, Robinson S, Norton A, Esterman A, Taneerananon T. Peri-operative use of dexmedetomidine in airway reconstruction surgery for obstructive sleep apnoea. J Laryngol Otol. 2010 Jan;124(1):67-72. doi: 10.1017/S002221510999123X. Epub 2009 Oct 26. — View Citation
Chernik DA, Gillings D, Laine H, Hendler J, Silver JM, Davidson AB, Schwam EM, Siegel JL. Validity and reliability of the Observer's Assessment of Alertness/Sedation Scale: study with intravenous midazolam. J Clin Psychopharmacol. 1990 Aug;10(4):244-51. — View Citation
Cheung CW, Ying CL, Chiu WK, Wong GT, Ng KF, Irwin MG. A comparison of dexmedetomidine and midazolam for sedation in third molar surgery. Anaesthesia. 2007 Nov;62(11):1132-8. — View Citation
Coles JP, Leary TS, Monteiro JN, Brazier P, Summors A, Doyle P, Matta BF, Gupta AK. Propofol anesthesia for craniotomy: a double-blind comparison of remifentanil, alfentanil, and fentanyl. J Neurosurg Anesthesiol. 2000 Jan;12(1):15-20. — View Citation
Conte V, Magni L, Songa V, Tomaselli P, Ghisoni L, Magnoni S, Bello L, Stocchetti N. Analysis of propofol/remifentanil infusion protocol for tumor surgery with intraoperative brain mapping. J Neurosurg Anesthesiol. 2010 Apr;22(2):119-27. doi: 10.1097/ANA.0b013e3181c959f4. — View Citation
Coursin DB, Coursin DB, Maccioli GA. Dexmedetomidine. Curr Opin Crit Care. 2001 Aug;7(4):221-6. Review. — View Citation
From RP, Warner DS, Todd MM, Sokoll MD. Anesthesia for craniotomy: a double-blind comparison of alfentanil, fentanyl, and sufentanil. Anesthesiology. 1990 Nov;73(5):896-904. — View Citation
Johnson KB, Egan TD. Remifentanil and propofol combination for awake craniotomy: case report with pharmacokinetic simulations. J Neurosurg Anesthesiol. 1998 Jan;10(1):25-9. Erratum in: J Neurosurg Anesthesiol 1998 Apr;10(2):69. — View Citation
Kamibayashi T, Maze M. Clinical uses of alpha2 -adrenergic agonists. Anesthesiology. 2000 Nov;93(5):1345-9. Review. — View Citation
Mack PF, Perrine K, Kobylarz E, Schwartz TH, Lien CA. Dexmedetomidine and neurocognitive testing in awake craniotomy. J Neurosurg Anesthesiol. 2004 Jan;16(1):20-5. — View Citation
Manninen PH, Balki M, Lukitto K, Bernstein M. Patient satisfaction with awake craniotomy for tumor surgery: a comparison of remifentanil and fentanyl in conjunction with propofol. Anesth Analg. 2006 Jan;102(1):237-42. — View Citation
Nelson LE, Lu J, Guo T, Saper CB, Franks NP, Maze M. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology. 2003 Feb;98(2):428-36. — View Citation
Oda Y, Toriyama S, Tanaka K, Matsuura T, Hamaoka N, Morino M, Asada A. The effect of dexmedetomidine on electrocorticography in patients with temporal lobe epilepsy under sevoflurane anesthesia. Anesth Analg. 2007 Nov;105(5):1272-7, table of contents. — View Citation
Ramsay MA, Saha D, Hebeler RF. Tracheal resection in the morbidly obese patient: the role of dexmedetomidine. J Clin Anesth. 2006 Sep;18(6):452-4. — View Citation
Sarang A, Dinsmore J. Anaesthesia for awake craniotomy--evolution of a technique that facilitates awake neurological testing. Br J Anaesth. 2003 Feb;90(2):161-5. — View Citation
Serletis D, Bernstein M. Prospective study of awake craniotomy used routinely and nonselectively for supratentorial tumors. J Neurosurg. 2007 Jul;107(1):1-6. — View Citation
Silbergeld DL, Mueller WM, Colley PS, Ojemann GA, Lettich E. Use of propofol (Diprivan) for awake craniotomies: technical note. Surg Neurol. 1992 Oct;38(4):271-2. — View Citation
Souter MJ, Rozet I, Ojemann JG, Souter KJ, Holmes MD, Lee L, Lam AM. Dexmedetomidine sedation during awake craniotomy for seizure resection: effects on electrocorticography. J Neurosurg Anesthesiol. 2007 Jan;19(1):38-44. — View Citation
Venn RM, Bradshaw CJ, Spencer R, Brealey D, Caudwell E, Naughton C, Vedio A, Singer M, Feneck R, Treacher D, Willatts SM, Grounds RM. Preliminary UK experience of dexmedetomidine, a novel agent for postoperative sedation in the intensive care unit. Anaesthesia. 1999 Dec;54(12):1136-42. — View Citation
* Note: There are 24 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Ability to perform intra-operative mapping during awake craniotomy | immediately, intra-operative | No | |
Secondary | Incidence of complications (respiratory depression, failure to provide adequate analgesia) | intra-operatively, 2h post-operatively, 24h post-operatively | No | |
Secondary | Patient and surgeon satisfaction to the corresponding anesthetic technique | intra-opeartively, 2h post-operatively, 24h post-operatively | No |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05023434 -
A Study to Measure the Effect of Brain Stimulation on Hand Strength and Function in Patients With Brain Tumors
|
||
Completed |
NCT04474678 -
Quality Improvement Project - "My Logbook! - I Know my Way Around!"; ("Mein Logbuch - Ich Kenne Mich Aus!")
|
N/A | |
Completed |
NCT02768389 -
Feasibility Trial of the Modified Atkins Diet and Bevacizumab for Recurrent Glioblastoma
|
Early Phase 1 | |
Terminated |
NCT01902771 -
Dendritic Cell Vaccine Therapy With In Situ Maturation in Pediatric Brain Tumors
|
Phase 1 | |
Recruiting |
NCT03175224 -
APL-101 Study of Subjects With NSCLC With c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors
|
Phase 2 | |
Recruiting |
NCT03286335 -
Local Control, Quality of Life and Toxicities in Adults With Benign or Indolent Brain Tumors Undergoing Proton Radiation Therapy
|
N/A | |
Recruiting |
NCT05968053 -
Detection of Microplastics and Nanoplastics in Neurosurgery Patients (DT-MiNi)
|
||
Recruiting |
NCT05358340 -
Dual Perfusion Imaging for Characterizing Vascular Architecture of Brain Lesions
|
N/A | |
Recruiting |
NCT03276676 -
[18F]Fluciclovine and [18F]FLT PET/CT Assessment of Primary High-Grade Brain Tumors
|
Phase 2 | |
Completed |
NCT02851355 -
Follow-up Survey of Patients Who Were Treated for Medulloblastoma or Primitive Neuroectodermal Tumors of the Central Nervous in Norway
|
||
Completed |
NCT02558569 -
The Use of Fentanyl in General Anesthesia for Craniotomy With or Without 0.5% Levobupivacaine Scalp Block
|
Phase 4 | |
Completed |
NCT02409121 -
A Novel Health Information Technology System (BMT Roadmap) for Pediatric BMT Patients and Caregivers
|
N/A | |
Completed |
NCT02713087 -
Vasopressor Effects in Anesthetized Patients
|
Phase 4 | |
Withdrawn |
NCT02165995 -
Use of Navigated Transcranial Magnetic Stimulation (nTMS) in Generated Motor and Language Mapping to Evaluate Brain Recovery Following Surgery
|
N/A | |
Terminated |
NCT02674945 -
Understanding and Improving Quality of Life Through a Wireless Activity Tracker: Observational Phase
|
||
Completed |
NCT01171469 -
Vaccination With Dendritic Cells Loaded With Brain Tumor Stem Cells for Progressive Malignant Brain Tumor
|
Phase 1 | |
Withdrawn |
NCT01202539 -
Real-time Assessment of Frameless Intrafraction Motion
|
||
Terminated |
NCT01044966 -
A Study of Intraventricular Liposomal Encapsulated Ara-C (DepoCyt) in Patients With Recurrent Glioblastoma
|
Phase 1/Phase 2 | |
Completed |
NCT00760409 -
Differentiating Recurrent Brain Tumor Versus Radiation Injury Using MRI
|
N/A | |
Completed |
NCT00503204 -
Phase I : Cediranib in Combination With Lomustine Chemotherapy in Recurrent Malignant Brain Tumour
|
Phase 1 |