View clinical trials related to Brain Tumor Adult.
Filter by:Electrocortical stimulation (ECS) mapping is a procedure used during brain surgeries, for example when treating diseases like epilepsy or when removing brain tumors. ECS mapping helps surgeons locate areas of the cerebral cortex (the outer part of the brain) that are important for everyday tasks like movement and speech. ECS mapping has been used for decades, and is considered the "gold-standard" tool for locating important areas of cortex. Despite this long history, there is still no clear understanding of exactly how ECS works. The goal of this study is to learn details about the effects ECS has on the brain. The main questions the study aims to answer are: 1) how ECS affects the neurons of the cortex at the stimulation site; and 2) how ECS impacts brain regions that are critically important for human speech and language. These so-called "critical sites" can be physically distant from one another on the brain's surface, requiring extensive ECS mapping and long surgeries. Critical sites are thought to be part of a speech/language network of brain areas, and so the study's goal is to learn about how they are connected. In some participants, the brain's surface will also be slightly cooled. This is a painless procedure that does not harm the brain's function, but could provide insight as to which parts of the brain (the surface, or deeper parts) are responsible for the effects of ECS. By improving the understanding of how ECS affects the brain and improving the ability to identify critical sites, this study could potentially lead to shorter surgeries and better outcomes for future individuals who need this care. Participants will be recruited from among individuals who are undergoing brain surgery for epilepsy treatment or tumor removal. Participants will complete simple tasks like reading words or naming pictures, similar to standard testing that is already performed during their hospital stay.
To validate a predictive model for the risk of receiving RBCs in this population. This model uses four preoperative values (haemoglobin levels, tumour volume, previous craniotomy in the same spot, and number of craniotomies foreseen). The investigators would like to create an online data collection tool and calculator.
The purpose of this study is to test the safety and efficacy of iC9-GD2-CAR T-cells, a third generation (4.1BB-CD28) CAR T cell treatment targeting GD2 in paediatric or young adult patients affected by relapsed/refractory malignant central nervous system (CNS) tumors. In order to improve the safety of the approach, the suicide gene inducible Caspase 9 (iC9) has been included.
Children and adults with recurrent or progressive malignant brain tumors have a dismal prognosis, and outcomes remain very poor. Magrolimab is a first-in-class anticancer therapeutic agent targeting the Cluster of differentiation 47 (CD47)-signal receptor protein-alpha (SIRP-alpha) axis. Binding of magrolimab to human CD47 on target malignant cells blocks the "don't eat me" signal to macrophages and enhances tumor cell phagocytosis. Pre-clinical studies have shown that treatment with magrolimab leads to prolonged survival in models of Atypical Teratoid Rhabdoid Tumors (ATRT), diffuse intrinsic pontine glioma (DIPG), high-grade glioma (adult and pediatric), medulloblastoma, and embryonal tumors formerly called Primitive Neuro-Ectodermal Tumors (PNET). Safety studies in humans have proven that magrolimab has an excellent safety profile. Ongoing studies are currently testing magrolimab in adult myelodysplastic syndromes, acute myeloid leukemia, non-Hodgkin lymphoma, colorectal, ovarian, and bladder cancers. Herein we propose to test the safety of magrolimab in children and adults with recurrent or progressive malignant brain tumors.
The primary purpose of this study is to assess the feasibility, safety and reliability of the use of handheld dynamometry in evaluating intraoperative motor function for patients undergoing awake craniotomy for the resection of brain lesions located within or adjacent to the motor cortex.
Intraoperative flash visual evoked potentials (FVEPs) could monitor visual function during neurosurgery. There are fewer reports comparing the effects of sevoflurane-propofol balanced anesthesia and propofol-based total intravenous anesthesia under comparable bispectral index (BIS) levels on the amplitude and latency of flash visual evoked potentials (FVEPs) for sellar or parasellar tumors resection neurosurgeries.
This project adds to non-invasive BCIs for communication for adults with severe speech and physical impairments due to neurodegenerative diseases. Researchers will optimize & adapt BCI signal acquisition, signal processing, natural language processing, & clinical implementation. BCI-FIT relies on active inference and transfer learning to customize a completely adaptive intent estimation classifier to each user's multi-modality signals simultaneously. 3 specific aims are: 1. develop & evaluate methods for on-line & robust adaptation of multi-modal signal models to infer user intent; 2. develop & evaluate methods for efficient user intent inference through active querying, and 3. integrate partner & environment-supported language interaction & letter/word supplementation as input modality. The same 4 dependent variables are measured in each SA: typing speed, typing accuracy, information transfer rate (ITR), & user experience (UX) feedback. Four alternating-treatments single case experimental research designs will test hypotheses about optimizing user performance and technology performance for each aim.Tasks include copy-spelling with BCI-FIT to explore the effects of multi-modal access method configurations (SA1.3a), adaptive signal modeling (SA1.3b), & active querying (SA2.2), and story retell to examine the effects of language model enhancements. Five people with SSPI will be recruited for each study. Control participants will be recruited for experiments in SA2.2 and SA3.4. Study hypotheses are: (SA1.3a) A customized BCI-FIT configuration based on multi-modal input will improve typing accuracy on a copy-spelling task compared to the standard P300 matrix speller. (SA1.3b) Adaptive signal modeling will allow people with SSPI to typing accurately during a copy-spelling task with BCI-FIT without training a new model before each use. (SA2.2) Either of two methods of adaptive querying will improve BCI-FIT typing accuracy for users with mediocre AUC scores. (SA3.4) Language model enhancements, including a combination of partner and environmental input and word completion during typing, will improve typing performance with BCI-FIT, as measured by ITR during a story-retell task. Optimized recommendations for a multi-modal BCI for each end user will be established, based on an innovative combination of clinical expertise, user feedback, customized multi-modal sensor fusion, and reinforcement learning.
Cranial radiation therapy (RT), commonly used to treat benign and malignant brain tumors, can lead to cognitive impairments in domains not related to neuroanatomic structures directly impacted by the tumor. The study will prospectively enroll 75 patients with benign and low-grade brain tumors who will undergo partial brain RT, with either conventionally fractionated or hypofractionated schedules. Subjects will receive MRI scans at baseline, 6 months, and 12 months. Given the role of the limbic system in key cognitive functions affected by RT, researchers have a particular interest in characterizing MRI changes in the limbic system and thalamus in relation to memory and related processes. Specific Aims: 1. To examine objective neurocognitive changes over time. The investigators hypothesize that they will see RT-induced neurocognitive impairment in up to 50% of patients after cranial RT. 2. To examine changes in brain tissue (via MRI) induced by off-target RT in patients with benign and low-grade brain tumors. The investigators specifically hypothesize that comapping of RT dose and MRI changes in the thalamus and limbic system (i.e., thalamic nuclei, hippocampus, fornix, hypothalamus/mammillary bodies, limbic lobe, cingulum) will be most distorted by off-target RT. 3. To examine the relationship between MRI changes for key neuroanatomic structures identified in Aim 1 with objective neurocognitive testing. The investigators hypothesize that cognitive decline will be correlated with damage revealed by MRI to limbic and thalamic structures. This research will help to define which neuroanatomic structures are most at risk from RT-induced damage and will help ultimately establish new dose constraint guidelines for important structures to improve cognitive outcomes.
This study is being conducted to find out if the safety and tolerability of an experimental cell therapy is safe to administer to patients with a newly diagnosed glioblastoma multiforme (GBM) in combination with temozolomide (TMZ).
The study population was selected from high grade glioma pateints attending the Department of Clinical Oncology, Assiut University hospital during the period from December 2018 to September 2020, we analyzed human high grade gliomas paraffin block for FLG2 expression