Clinical Trials Logo

Brain Neoplasms clinical trials

View clinical trials related to Brain Neoplasms.

Filter by:

NCT ID: NCT05356507 Withdrawn - Brain Tumor Clinical Trials

The Effects of Spiritual Needs on Spiritual Well-Being in Patients With Brain Tumors: A Structural Equation Modeling Approach

Start date: August 29, 2022
Phase:
Study type: Observational

The aim of this study is to describe a patient's Spiritual Needs and related factors that contribute to a patient's Spiritual Well-Being in the context of perioperative care. The primary objective of this study is to examine the fit of the Structural Equation Model (SEM) of the theory on Spiritual Well-Being (SWB) and explain how SWB is affected by Symptom Burden (SB), Psychological Distress (PsD), and Spiritual Needs (SN) reported by the patients with brain tumors before having surgery.

NCT ID: NCT05346367 Recruiting - Brain Metastases Clinical Trials

Improving Therapeutic Ratio With Hypo Fractionated Stereotactic Radiotherapy for Brain Metastases

SAFESTEREO
Start date: July 18, 2022
Phase: N/A
Study type: Interventional

Randomized phase II trial. The study aims to investigate a different and potentially safer radio therapeutic treatment method for brain metastases. The current standard of stereotactic radiotherapy (SRT) in one or three fractions is compared to fractionated stereotactic radiotherapy (fSRT) in five fractions.

NCT ID: NCT05342454 Recruiting - Brain Tumor Clinical Trials

A Comprehensive Clinical fMRI Software Solution to Enable Mapping of Critical Functional Networks and Cerebrovascular Reactivity in the Brain

Start date: May 23, 2022
Phase:
Study type: Observational

Our preliminary work demonstrates that an integrated fMRI software solution, incorporating tb-fMRI, rs-fMRI, and CVR mapping, is clinically feasible and helps clinicians plan brain tumor resection. We have developed a novel automated seed selection method that can accurately map language networks from rs-fMRI. We hypothesize that our innovative approach to enhance, optimize, and validate our preliminary software and integrate it with an established fMRI platform will create robust solutions for clinical RSN and CVR mapping. Partnering with NordicNeuroLab (NNL) will leverage the professional software development by a seasoned commercial MRI software producer in coordination with leading clinical and research experts at MD Anderson. The research will be conducted through three specific aims: 1. Develop a clinical software platform for mapping RSNs and determine optimized workflow for presurgical localization of eloquent areas. 2. Develop a clinical software platform for mapping CVR and determine optimized workflow for identifying and visualizing brain areas with potential false-negative fMRI results. 3. Test and validate RSN and CVR mapping software in patients undergoing neurosurgery.

NCT ID: NCT05341739 Recruiting - Clinical trials for Brain Metastases, Adult

A Phase II Study of Pre-Op SRS Followed by Surgical Resection for Brain Metastases

Start date: December 14, 2021
Phase: N/A
Study type: Interventional

This is a research study to determine if performing stereotactic radiosurgery (SRS) prior to surgical resection of the brain metastasis (tumor) will improve local control, in other words, increase the possibility of total removal of the primary tumor without local recurrence on longterm follow up. This research study will also determine if pre-operative SRS will lower the risk of radionecrosis that is the breakdown of body tissue at the original tumor site, and the development of leptomeningeal disease.

NCT ID: NCT05341349 Recruiting - Metastatic Melanoma Clinical Trials

Stereotactic Radiosurgery and Immune Checkpoint Inhibitors With NovoTTF-100M for the Treatment of Melanoma Brain Metastases

Start date: October 13, 2022
Phase: Phase 1
Study type: Interventional

This phase I trial finds out the side effects and possible benefits of stereotactic radiosurgery and immune checkpoint inhibitors with NovoTTF-100M for the treating of melanoma that has spread to the brain (brain metastases). Stereotactic radiosurgery is a type of external radiation therapy that uses special equipment to position the patient and precisely give a single large dose of radiation to a tumor. It is used to treat brain tumors and other brain disorders that cannot be treated by regular surgery. Immunotherapy with monoclonal antibodies, such as pembrolizumab, nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. NovoTTF-100M is a portable battery operated device which produces tumor treating fields in the body by means of surface electrodes placed on the skin. Tumor treating fields are low intensity, intermediate frequency electric fields that pulse through the skin to disrupt cancer cells' ability to divide. Giving stereotactic radiosurgery and immune checkpoint inhibitors with NovoTTF-100M may work better than stereotactic radiosurgery and immune checkpoint inhibitors.

NCT ID: NCT05340881 Recruiting - Brain Tumor Clinical Trials

Systematic Light Exposure in Pediatric Brain Tumor Survivors

SLEPBT
Start date: October 14, 2022
Phase: N/A
Study type: Interventional

Children and adolescents treated for a brain tumor often experience fatigue and cognitive symptoms, such as slowed information processing and inattention. These symptoms may cause difficulty carrying out daily activities at home and at school. There are few well-researched, non-pharmacological interventions aimed at improving symptoms of fatigue and by extension cognitive symptoms. Systematic bright light exposure has been shown to improve symptoms of fatigue in adult survivors of cancer and children treated for some forms of cancer. This is a pilot/feasibility study and the first known study in children treated for a brain tumor. Findings from this study will be used to help plan a larger study to examine the effectiveness of this intervention and mechanisms of action. PRIMARY OBJECTIVE: 1. To evaluate feasibility and adherence in a study of systematic bright light exposure used to improve fatigue and cognitive efficiency in survivors of pediatric brain tumor, including rates of enrollment, adherence, and acceptability. SECONDARY OBJECTIVES: 2. To estimate the effect size of change in fatigue associated with bright light exposure. 3. To estimate the effect size of change in cognitive efficiency associated with bright light exposure.

NCT ID: NCT05328739 Completed - Caregiver Burden Clinical Trials

The Effect of Home Care Planned According to Orem in Patients With Primary Brain Tumor and Their Caregivers

Start date: March 6, 2019
Phase: N/A
Study type: Interventional

This study was conducted to evaluate the effect of home care planned according to Orem on self-care agency and care burden in brain tumor patients and their caregivers. The study was performed with patients who underwent surgery for a brain tumor and their caregivers in the neurosurgery clinic of a tertiary hospital. Ethical committee approval, institutional permission, patients and their caregiver verbal and written consent were obtained. According to Orem's nursing theory, home care practice combining education, counseling and nursing care started with pre-operative education in the hospital for the patients and caregivers in the intervention group and continued at home with 5 home visits in a 6-month period. Self-Care Agency Scale, MD Anderson Symptom Inventory Brain Tumor-Turkish Form and Caregiver Burden Scale were used as measurement tools in the study.The value of p<0.05 was accepted statistically significant in the data analyses.

NCT ID: NCT05326425 Recruiting - Lung Neoplasms Clinical Trials

Lazertinib in Patients With NSCLC With Asymptomatic or Mild Symptomatic Brain Metastases After Failure of EGFR TKI.

Start date: June 23, 2021
Phase: Phase 2
Study type: Interventional

This is an open-label, single-intervention, multicenter clinical trial in patients with non-small cell lung cancer with asymptomatic or mildly symptomatic brain metastases after failure of EGFR TKI treatment. The objective of this study is as follows. - Primary objective : intracranial objective response rate (iORR) with RECIST 1.1 - Secondary objectives : intracranial progression free survival(iPFS), Intracranial objective response rate in T790M negative, isolated CNS progression patient group, overall Objective Rsponse Rate(ORR), duration of response(DoR), disease control rate(DCR), treatment failure pattern): intracranial progression or extracranial progression or both, salvage intracranial treatment rate, safety and tolerability

NCT ID: NCT05323955 Recruiting - Brain Metastases Clinical Trials

Secondary BRain Metastases Prevention After Isolated Intracranial Progression on Trastuzumab/Pertuzumab or T-DM1 in Patients With aDvanced Human Epidermal Growth Factor Receptor 2+ brEast Cancer With the Addition of Tucatinib

BRIDGET
Start date: March 23, 2023
Phase: Phase 2
Study type: Interventional

Patients with advanced HER2+ breast cancer on maintenance trastuzumab/pertuzumab or T-DM1 with 1st or 2nd intracranial disease event (brain metastases) and stable extracranial disease will be enrolled. They will receive local therapy with stereotactic radiosurgery ± surgical resection if indicated followed by enrollment. Patients will continue standard of care trastuzumab/pertuzumab or T-DM1 with the addition of tucatinib. Hormone receptor positive patients requiring endocrine therapy should continue. Study treatment will continue until disease progression or intolerable side effects. Patients on trial with extracranial disease progression with stable intracranial disease should continue tucatinib into next line of therapy.

NCT ID: NCT05317858 Recruiting - Brain Tumor Clinical Trials

Blood-brain Barrier (BBB) Disruption Using Exablate Focused Ultrasound With Standard of Care Treatment of NSCLC Brain Mets

Start date: August 12, 2022
Phase: Phase 3
Study type: Interventional

The purpose of this study is to evaluate the safety and efficacy of targeted blood brain barrier disruption with Exablate Model 4000 Type 2.0/2.1 for the treatment of NSCLC brain metastases in patients who are undergoing planned pembrolizumab monotherapy.